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Abstract

Measurements of germanium (Ge) in deep-sea spiadetens are presented
for sponges collected by dredge and for spiculgatisd from a range of deep-sea
sediment coressermanium to silicon (Si) ratios (Ge{gifor sponge silica ranged
between 0.07hmol/mol and 0.38@mol/mol, which are much lower than the
present-day seawater Ge/Si ratio of n7ol/mol. A plot of Ge/Sj, versus estimated
seawater Ge (and Si) concentration produced arlne¢ationship with the Ge content
of spicules increasing with seawater Ge concentrailots of Ge/§j versus depth
for both dredged sponges and sediment-bound spiputeluced oceanic profiles
similar to those of dissolved Ge (and Si) conceiutna To explain the fractionation
seen in the sponge Geysiata two models are presented. The first model tese
interpret the data assumes that sponges only réspdhe Ge content of the ambient
seawater, implying that, Ge incorporation into gp®silica is independent of the
seawater Ge/Si ratio up to a Si concentration otiah00 pmol/L. This model is
consistent with th&®Ge uptake results of Davie et al. [Biol. Cell 4811202, 1983]
for cultured spicules. Their results showed thatititorporation of Ge in sponge
silica is only dependent on the Ge concentratiaefwater in which a sponge is
growing. The second model used to explain the @ssames that Gelpi
fractionation results from subtle differences ia tiptake kinetics of Ge and Si. While
the assumptions used by each model to describdatheare different, it is possible to
use sponge Gelpdata to reconstruct palaeo-Ge concentrations usodgl |, and to
reconstruct palaeo-Si concentrations using bothetso@alaeo-Si concentrations

estimated using both models are in good agreement.
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1. Introduction

The cycling of inorganic germanium (Ge) in the atekbsely matches that of
silicon (Si) [1-3]. The strong correlation betwdabese two elements, reflected in a
near constant ratio of 0.7 pmol/mdl & 0.99), suggests that the processes that
control the distribution of Si in the ocean alsctdie the distribution of Ge in the
ocean [1, 2, 4, 5].

The main group of primary producers that contrel ¢lcling of Si in the
ocean are diatoms [6, 7]. Although diatoms are salyace dwellers, they control the
cycling of Si by stripping it from surface watecsform siliceous tests. The Si within
these tests is regenerated at depth when sinkatgrdifrustules dissolve. Although
Ge mimics Si, differences in their geochemical vaha do occur. The two main
sources of Ge and Si to the ocean are from mimgrathering and hydrothermal
fluids [8-10]. The main sink for Si removal frolmetocean is via incorporation into
biogenic opal followed by burial. Like Si, Ge istdrom the ocean via incorporation
into biogenic opal followed by burial, however Be has addition sink; it is loss via
non-opal phases during sediment diagenesis [11-15].

Work by Froelich and collaborators has shown thatGe/Si ratio of small
diatoms reflects the seawater Ge/Si ratio in wkhehdiatoms grew [5, 16, 17]. This

relationship suggests that the Ge/Si signaturditdoms could be used to track
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changes in the cycling of these two elements irsthiace ocean. Froelich and
coworkers have shown that the Ge/Si signatureeobtiean has varied in a cyclic
manner during the late Pleistocene. The diatom iGe¢®rd that they produced
shows clear, systematic variations between intel@l§Ge/Si = 0.70-0.7@mol/mol)
and glacial periods (Ge/Si = 0.45-0 @@ol/mol), suggesting that either the Si
concentrations increased in size or the Ge coreténts decreased in size during
glacial times [2, 5, 11-13, 18].

While the Ge/Si signature of fossil diatoms has/proto be very useful for
tracking changes in the Ge/Si ratio of the surfag®an [5], it provides limited insight
into the cycling of Ge through the water column.al@ in understanding Ge cycling
in the oceanic systems, we present Ge/Si resulspfange silica (Ge/§) collected
from a range of depths and locations and presaentrtadels to explain the variations
found within the data. We then demonstrate thatbeontent of fossil spicules can

be used to trace changes in the Si status of e asean.

2. Materialsand Methods

Sample acquisition

Sponges were collected using a rock dredge fronNdve Zealand research vessels
Tangaroaand HMNZSEndeavouyand the Italian vessihlica. On collection,
specimens were frozen, preserved in 70% isopropandkied, and subsequently
identified to family and ordinal level. All specimeare housed in the NIWA

Invertebrate Collection (NIC) at the National Ihstie of Water and Atmospheric



87 Research, Wellington, NZ. Deep-sea sponge ideatifins are available upon
88 request.
89 Filtered (0.45 um) seawater samples were collactaty a CTD-rosette
90 system [1] from offshore South Australia {87.73 S, 13654.24 E) and from the
91 Bounty Trough region (U2795: 488.1 S, 17830.6 E). Post collection, samples
92 were stored un-acidified until analysed.
93
94  Sediment core selection
95 The main criterion on sample selection was that ttentained sponge spicules.
96 Listed in Table 1 and presented in Figure 1 aresased in the study. Most core
97 samples here were from cores with well defined mblagies. The few top-core
98 samples without an established chronology werenasduo be modern in age (Table
99 1). The age model established for core Q585 wantélom Weaver et al. [19],
100 which is a modified version from the original modelveloped by Nelson et al. [20].
101 The age models established for cores U939 and W@88 taken from Sikes et al.
102 [21].
103
104 Sample preparation
105 Sponge spicules were cleaned by modifying methoeMqusly used for cleaning
106 diatom frustules and sponge spicules [16, 22, B3fly, dredged sponges were
107 digested at 5@ in a hydrochloric acid and hydrogen peroxide (1 M%) solution
108 for five hours. Spicule remains were rinsed witiodesed water, digested for one

109 hour in a hot (98C) solution of 0.1% hydroxylamine hydrochlorideli#o acetic acid,
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followed by a second hour in a solution of 0.1%igodfluoride in 1% acetic acid.
The final cleaning step involved heating in a sfyacid solution (50% HNQHCI,
1:1) for two hours and then allowing the samplesit@vernight before rinsing four
times with deionised water.

Calcium carbonate present in sediment core sam@esliminated by
titrating with hydrochloric acid followed by digésh with hydrogen peroxide.
Samples were then boiled for 5 minutes in a sodierametaphosphate (1%)
solution, diluted, and the process repeated. Sedissnples were sieved at 15
pore size and 30-50 spicules were selected from1b8um fraction under a
binocular microscope. Spicules were chemicallyrmdebas above.

Sponge spicules were dissolved by adding 1 mL 28iusn hydroxide
(Aristar, BDH) pre-spiked with enriché@Ge (Chemgas, France). Samples were
heated at 88C for 12 hours. After cooling, samples were transféto 5 mL vials
and diluted to 4 mL with deionised water.

The measure@Ge/“Ge ratios varied between 2 and 15, with the majofit
samples having Ge/“Ge ratio around 8, our target ratio. A target spike of 8
was chosen to allow an increased dynamic rangeglsample determination by
inductively coupled plasma-mass spectrometry (IC®;Mnd to keep sample counts

during pulse detection within range.

Silicon and germanium determination
Silicon concentrations were determined colormeltsid@4], while Ge concentrations

were determined by isotope dilution using an autech&iydride generation system
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attached to an ICP-MS (Elan-6000, Perkin Elmer,tralia) [3] [25]. The absolute

Ge blank associated with the determination of Ge W@4+ 0.01 pg (n = 8); which
was mainly derived from the sodium borohydride usedng the hydride generation
process. For sponges collected by dredge, thik blas insignificant. For the
majority of sediment spicule samples, the blankesgnted between 1% and 8% of
the total Ge signal. Sponge Gep$eproducibility was better than 12 % (VM28-70 0-
1 cm, Ge/Sj = 0.149+ 0.017pmol/mol; meant standard deviation; n = 5). The Ge
reproducibility for seawater samples waS% (n = 5) at a Ge concentration of 5.9

pmol/L.

3. Results and discussion
Sponge Ge/Si versus seawater Ge concentration

Germanium/Sj results ranged between about 0.075 pmol/mol t800.3
pmol/mol (Figures 2 and 3), which is considerablyér than the seawater Ge/Si
ratio of 0.7 pmol/mol and indicates that thereigmigicant discrimination of Ge
during Si uptake and spicule formation. When théSgresults were plotted against
estimated seawater Ge concentration for each spordjeore site (Figure 2), it
became apparent that spicule Gg/fBicreased with increasing seawater Ge (and Si)
concentration. This increase was near linéar (0.91) across the range of seawater
Ge and Si estimated for each site. Plots of Ggv8rsus depth for samples collected
from different ocean regions showed distinct défases; North Atlantic spicules had
lower Ge/Sj, values than Bounty Trough spicules (Figure 3).rSBe/Si, profiles

were similar to measured oceanic profiles of digswlinorganic Ge for these regions
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(Figure 3b). Indeed, the low Ge{dralues measured for Atlantic spicules match the
low seawater Ge concentrations measured for tlearobasin. Similarly, the higher
Ge/Si, values measured for Bounty Trough spicules matethigher Ge
concentrations measure sample collected from tleamic region. There is no readily
apparent relationship with that of the seawateSGatio of 0.7 pmol/mol.

The increase of Gelgwith depth is not a temperature or pressure etfect
Ge incorporation into sponge silica. This is beeaggonges collected from a range of
sites, with differing pressures and temperaturépl@tted along a single Ge/pi
versus Ge line. For example, spicules isolated fleep North Atlantic sediments
had lower Ge/Sisp values than spicules isolated fteep Bounty Trough sediments,
yet deep water temperatures in both regions atemat couple of degrees of each
other. This indicates that temperature does naiente Ge incorporation into sponge
silica. Likewise, analysis of two shallow-water sipgens collected from off Cape
Hallett, Antarctica, where estimated Ge concerratiwere around 58 pmol/L,
produced relatively high Gelgialues, 0.31 pmol/mol and 0.30 mol/mol. This resul
suggests that pressure (depth) does not signiljcexfiuence Ge incorporation into
sponge silica.

The incorporation of Ge into sponge silica doesappear to be sponge-
species dependent. The Gg/8ata plotted in Figure 2 is made up of specimens
from a range of hexactinellid and demosponge spegét all Ge/Sp ratios increased
with increasing seawater Ge (and Si) concentratloraddition, unidentified spicules
isolated from cores and sponges collected at auljaites produced similar results

suggesting that vital effects between species ananal.
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Sample homogeneity

The lower Ge/Sj ratios found in sponges compared to that of taevager Ge/Si
ratio might suggest that the distribution of Gehwitthe spicule matrix is uneven. At
elevated concentrations (micromolar levels), Geldgashown to lead to spicule
deformation [26-29]. However, the radioisotope woflDavie et al. [30] indicates
that only a minimal amount 8fGe can be found within the central proteinaceous
axial filament of spicules. The predominant sink@e within the sponge spicules is
the silica matrix that surrounds the filament. Fliiea proteinaceous axial filament
itself is primarily used for initiating and direry spicule formation [28, 30-33], thus
it may contain minor amounts of Ge resulting framfiation of the first few silica
laminates [34]. This result indicates that proteawus axial filament is not the sink
within spicules; rather, it is the silica matrirdieed, the amount of carbon within

sponge silica is low at about 0.05% by weight [Blbal, unpublished data, 2005].

Mechanism(s) leading to germanium incorporatiomigponge silica

There are two likely mechanisms leading to thedase in the Ge content of sponge
silica with increasing Ge as shown in Figure 2ZTh¢ Ge/Sj,of spicules is solely
dependent on the Ge concentration of the surrogreBawater and is independent of
the Si concentration of that seawater, and; 2)G&kSkpis a product of strong Ge/Si

fractionation during Ge and Si uptake from the sdawsurrounding the sponge.

Mechanism | (Model I)
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For the first mechanism, if the incorporation of i&asolely dependent on the

Ge concentration, this can be expressed as:

Ge
( j :a'[GdSeawater-FC (1)
Si g,

where the Ge/§jequals the seawater Ge concentration &gl multiplied by a
proportionality constara plus a constartt. If this is the case then the Si in the term
Ge/Skp purely represents the fact that Ge values have beenalized to silica. In
this model we assume that there is no connectitwdas the constant seawater
Ge/Si ratio of 0.7 pmol/mol and the sponge Ggi@iues. Values derived forandc
from fitting the sponge Ge/spto seawater Ge concentration are 0.0031 + 0.0002
mol™ and 0.082 + 0.008 pmol/mol, respectively.

There is some evidence to suggest that the incatiparof Ge into sponge
silica is solely dependent of the Ge concentratiotme surrounding water at low
seawater Si concentrations. This evidence comes tine work of Davie et al. [30]
involving the culture of sponge gemmules for treshwater sponggpongilla
lacustris In this experiment, gemmules were grown ovemgeof Si concentrations
but at a fixed®Ge concentration for two periods, 9 and 11 days. fElsults from this
experiment (Figure 4a) showed that the amoufit®é incorporated into new formed
spicules was relatively constant across a Si raf@gumol/L to 150 pmol/L. At
higher concentrations, the amounfi&e declined suggesting either an isotope
dilution affect associated with the declining Ga#gio of the medium [30], or a

decline in the efficiency of Ge transport into sotyytes (skeletal secretory cells)
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[35]. Their results also indicate that the amourff@e is time-dependent; 11 day
spicules contained mof€Ge than 9 day spicules (Figure 4a).

In the reverse experiment, Davie et al. [30] hakl $i concentration of the
culture medium constant and varied the Ge conaamtré-igure 4b). The results
from this experiment showed that the amourff@# incorporated into new formed
spicules increased with increasing Ge concentraliba one issue with relating this
experiment to our field data is the concentratib@e added to the culture medium.
Germanium additions to the medium were in the mmlamrange, whereas in
seawater Ge concentrations are in the low picomalage (Figure 4b). However, the
increase in spicul®Ge concentration with increasing Ge concentratiche
medium found in the Davie et al [30] experimentasisistent with the Ge/sairesults
we observed for deep-sea sponges (Figure 2).

Overall, the results from the Davie et al. [30] esiments, the similarity
between dissolved Ge and Ggj®rofiles (Figure 3) and the linear relationship
established between dissolved Ge and GgfSgure 2), all indicate that the Ge
concentration of sponge silica can be directlytegldo the ambient Ge concentration

of the waters surrounding sponges and not the lastasvater Ge/Si ratio.

Mechanism Il (Model II)

An alternative scenario to mechanism | is the fileiyi that the sponge Gelspratio
is a product of strong Ge/Si fractionation during &d Si uptake from the
surrounding seawater. Investigations by ReinckeBarthel [36] and Maldonado et

al. [35] indicate that sponges have a much lowimigf for Si than diatoms. Silicon
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uptake experiments involving the marine spoHgéchondria paniced36] showed
that the uptake of Si could be modelled using ahlslatis-Menten approach. The
results from this study produced a half saturatiomstant (Km) of 4mol/L and a
saturation rate (May of 19 umol/g/h. The Km value of 46 umol/L is calesably
larger than the Km for diatoms, which generallyges between about 0.2 and 10
pmol/L [37, 38]. In contrast, the Vmax fbr. paniceais lower than the Vmax for
diatoms [37].

We tested the idea that slight differences in thehisielis-Menten constant,
Km, for Ge and Si during uptake led to Ge/Si frastion, by modelling the Ge/Si

uptake using the following equations:

_ VSimaX[Si]

¥ Kmg +[S] N
— VGq:naX[Gé

> Kmy,+[G4 ©

In this Michaelis-Menten fractionation model, itassumed that both Ge and Si are
taken up the by one transport system, i.e. Ge lashay an isotope of Si, therefore
what the sponge “sees” is the combined concentrimitdd Ge and Si, which is
essentially the Si concentration of the water'[[SAssuming that there is no
fractionation after uptake, i.e. during silica dsijtion within the spicule, then the

spicule Ge/Sp ratio should reflect changes in the seawater Gatti (Ge/Siw) and
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subtle differences in the rate of Ge and Si uptakeng these lines, the Gejsof

sponge silica can be modelled using the followiggagtion:

Vo9

L ovelSl e S
St /g Vo \SiJew Vs, IS8T (Si)sy, )

Km, +[S]

Using the Si uptake data from Reincke and Bar3@] s starting point, wheMg;,
andVg, equalled 19 umol/g/h, and kenand Knge equalled 4umol/L, we
modelled the Ge/gjdata (Figure 5) by varying Kgrand K while holdingVg,
andV;, constant. The Ge§j ratio was set to the present-day value of 0.7

pmol/mol. Two assumptions associated are thaheataximum uptake rate for Ge,

V,

e, IS the same as it is for Si and; b) the fractimmaseen in the Ge/pdata

results from differences in Kgrand Knie The assumption that;, and

Vg, rfemain the same is required for wheh>6i Kmsjand Knge so that \&4/V'si

€
should be equal to one. Using a least squaresgfiffocedure, we obtained values for
Kmsiand Kmseof 14.2umol/L and 173umol/L, respectively. In Figure 5 the model
Ge/Si, curve, along with the original Gelgdata, is plotted versus estimatet Si
concentration for each benthic site. As shownntloeel curve provides a reasonable

fit for the sponge Ge/§jdata (F = 0.90). When the Sis increased to a few thousand
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pmol/L, the model curve approaches the seawateriGgei@lue of 0.7 pmol/mol,

thereby satisfying our initial assumption thaf equalV, .

The model value of 14 2mol/L obtained for Kng; is lower than the starting
value of 46umol/L, while the value 173 qimol/L obtained for Krgeis considerably
higher than the starting value of géol/L. The large difference between kmand
Kmge results in subtle differences in the rate of uptakeach element and leads to a
reduced rate of Ge uptake relative to Si. GermaftBufmactionation during uptake is
the likely mechanism leading to the low Ggj&atios observed in sponges compared
to that of seawater.

Although differences in Ge and Si uptake kinetias explain the decline in
Ge/Si, with declining Siconcentration, it cannot explain the sponge celtata
from the Davie et al. [30] experiments (Figureswhere the incorporation of Ge in
sponge silica appears to be independent of Si@r&ientrations below about 100

pmol/L.

Differences between the models

Although the two models describe the sponge Ggissonable well, the
assumptions used to develop each model are diffdrethe first model, it was
assumed that the Ge{Siatio is dependent only on the Ge concentratiathef
surrounding seawater. In the second model, subtezehces in the kinetics of Ge
and Si uptake were used to describe the Ggi8ia. Clearly, the exact mechanism(s)
leading to Ge/Si fractionation will require a dédiculture study to clarify which

model best describes Ge incorporation into spoiliga sver a range of conditions.
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307 The use of the Ge content of sponge spicules faepahemical reconstructions

308 While there are differences between the two moudistsl to describe the

309 sponge Ge/gidata, both models can be used to reconstruct ckangeean Si

310 concentration. Using model I, one can derive Geenfrations from Ge/§jidata

311 using equation 1 and then coupling this data tes#avater Ge/Si ratio to obtain

312 estimates for Si concentration. Using model Il,amn 4 can be rearranged to obtain
313 an equation where 'Sicalculated:

%) (S on
SI SW SI opal

314 [S']= - G (5)
e e
(5.5,

315 Like model I, using estimates for seawater Ge/&lijas for Siconcentration can be

316 obtained from sponge Gelsilata.

317 As a demonstration, we have analysed the Ggififossil spicules isolated
318 from three cores, Q585, U938 and U939, located betwi4’S and 50°S, (see Table
319 1 and Figure 6). For Q585 and U938, samples cinelaist 25-30 kyr, while for

320 U939 samples cover the last 170 kyr. A general@seen in the Ge/gidata for

321 Q585 is the decline in values going from 0 to 10 (®igure 6). For the other deep-
322  water core, U938, a minimum in the GgjSalues occur around 14 kyr. For U939,
323 there is a very slight decline in GefMalues into marine isotope stage (MIS) 2.
324  Moving from MIS 1/2 transition through to MIS 3 etlSe/Sj, data for Q585 and
325 U398 gradually increase, although there are twkespin the Q585 record at 14 kyr

326 and 18 kyr. The overall reproducibility associatgth determining Ge/gj ratios is
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about 12 %, thus these peaks are significant. Hewyewe are presently not able to
ascribe an oceanic process to these peaks. Flirtbescale sampling of this core,
and nearby cores, should help elucidate theirrmrigor the shallow-water core U939,
the Ge/Sj, data decrease to a minimum around 40 kyr and gtydacrease again to
plateau at 70 kyr. From 80 kyr onwards, Gg/@alues decline again to a second
minimum around 135 kyr.

Using the Ge/Sj data for cores Q585, U938 and U939, we have réwatsd
palaeo-Si concentrations using both models (Figlré&lsing model I, we used the
relationship described by equation 1 to reconspatieo-Ge concentrations and then
divided these values by the seawater Ge/Si ratithtt time interval to obtain
estimates for Si (Figure 6). We used the diatonSGecord as a proxy for seawater
Ge/Si during the past [5, 39], and interpolatedigalto the corresponding spicule
sample age. For model Il, we used the fitted valae&msjand Kmse and combined
them with the diatom Ge/Si record for past seaw@t/Si to compute values for Si
using equation 5 (Figure 6). As can be seen, giynénare is good agreement
between both models for estimating palaeo-Si. Tiig significant deviation between
the two models is for the two spikes seen in thiSggecord for core Q585. The
high SI values produced by model Il result from spike Ggi&lues being in a
region where the model starts to flatten out; is thgion, a small variation in Gesi
leads to large variation in the estimation dfc®ncentration. Overall, model
agreement suggests that, while the exact mechas)issading to Ge/Si fractionation
in sponges is not well understood, the Gg#&itio of sponge spicules can be used to

reconstruct palaeo-Si concentrations.
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The reconstruction of palaeo-Si concentration rsi@aarly valuable because
there is conflicting evidence on the nutrient sfaifithe deep Southern Ocean during
glacial times [40-43]. Interpretation 8t°C data from benthic foraminifera suggests
that the deep Southern Ocean was nutrient-enridhedg glacial times [40, 41],
while trace metal proxies for nutrients suggest tha nutrient content of the glacial
Southern Ocean was similar to present-day lev@ls43]. Detailed sponge Ge{si
records from the Southern Ocean should help clésfgutrient status for the past,

and help elucidate the processes leading to disagmet between nutrient proxies.

4. Conclusions

Germanium/Si ratios for sponge spicules collectethfsponges and isolated from
sediments ranged between 0.Qirdol/mol and 0.38@umol/mol. Such values are
lower than the present-day seawater Ge/Si rati)of umol/mol. A plot of Ge/Sj,
versus estimated seawater Ge (and Si) concentyatimhuced a linear relationship. A
plot of Ge/Si, versus depth for sponge spicules collected froomges and isolated
from sediments produced oceanic profiles similahtse of dissolved Ge and Si
concentration, thereby indicating that the incogpioin of Ge into spicules is not
simply associated to the seawater Ge/Si ratio.ri&ehanism(s) leading to such
Ge/Sipfractionation have been modelled using two appresachhe first modelling
approach assumes that the sponge Gg#8io is a direct result of the prevailing Ge
concentration of seawater. The Ge/Si ratio of séawa not assumed to influence Ge

incorporation.
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The second model assumes that the sponge & results from subtle
differences in the uptake kinetics of Ge and S spgonges. Using both models,
good fits of the Ge/§j data were obtained. Using either model, recontstmiof
palaeo-Si concentrations is possible using thei@®@sire of fossil spicules isolated
from sediment cores. Palaeo-Si estimates usingrbottels produce similar results,
and highlight the possibility of using this proxyreconstruct the nutrient status of

the deep ocean.
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Figure captions
Figure 1. Location map for dredge sponges (diamonds) anesaaircles) used in

this study.

Figure 2. Germanium content (Gekyiof sponge spicules versus Ge (and Si)
concentration for dredge sponges and sediment bepindles. Dissolved Ge
concentrations were estimated from existing Si @dt&/A, GEOSECS and WOCE
datasets) for these regions using the modern sea@®atSi ratio of 0. gmol/mol [2,
3]. As a guide, a scale for Si concentration, usesktimate Ge concentration, is
presented along the top of the graph. The Ge v@8srgationship for the present-
day ocean is uniform [2, 3], especially for deeperaamples, thus the error
associated with this Ge estimation is small. Dafaegsent a combination of live-
upon-collection dredged material (stars) and sedirheund spicule material (round

dots).

Figure 3. A. Depth profiles of Ge/gjfor sponge material from the Bounty Trough
and the Northeastern AtlantiB. Depth profiles of Ge concentration for the

Northwestern Atlantic [3], the Bounty Trough andisbiore South Australia.

Figure4. A. Incorporation of®Ge into sponge silica versus increasing Si
concentration. The background Ge concentrationMgsmol/L. The Ge/Si scale
presented along the top of this graph, and in pansetpresents the Ge/Si ratio of the

solution in which gemmules were cultured. Note thatGe/Si of the medium
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decreases with increasing Si concentrat®rThe incorporation 0¥¥Ge into sponge
silica versus increasing Ge concentration. The dpaekd Si concentration was 100
pmol/L. Note that the Ge/Si of the medium is incregavith increasing Ge
concentration. Data used to construct plots wesentdrom Figures 1 and 2 of Davie

et al. [30].

Figure 5. Ge/Si, data versus Sconcentration for dredge sponges and sediment
bound spicules. Symbols are the same as thosgume=2. Dotted line represents the
best-fit-line generated using equation 4 for mddehsert plot shows model data

cover a Siconcentration from 0 pumol/L to 3000 pmol/L.

Figure 6. A. Ge/Si, data versus age for spicules isolated from co&85QU938 and
U939. Note the change in age scale for core UB3Palaeo-Si concentrations

estimated using models | and 1.
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567 Table 1. Location and depth information for sponge andrsedi cores used in this

568 study.
Station and sampleregistration L ocation Depth (m)
Sponge samples
Bounty Trough
79632 NIWA 3279 43°50.94S 179°49.75E 442
u2585 NIWA 3280 43°49.61S 178°29.28E 454
T88 NIWA 3281 44°02.00S 174°46.60E 500
TAN9812/49 NIWA 3282 44°18.74S 178°13.74E 663
U2588 NIWA 3283 44°00.50S 178°30.00E 750
TAN9812/84 NIWA 3284 44°32.77S 178°31.03E 1073
U2593 NIWA 3285 44°20.30S 178°31.67E 1208
Bollons Seamount NIWA 2498 49°46.1S 176°45.45W 1278
Bollons Seamount NIWA 3025 49°46.1S 176°45.45W 1278
North Chatham Rise
u2578 NIWA 3286 42°48.69S 178°32.74E 1000
Kermadec Seamounts
Kermadec Seamounts NIWA 2532  33°44.18S 179°49.88E 619
Kermadec Seamounts NIWA 2588  33°10.25S 179°58.20W 999
Kermadec Seamounts NIWA 2539  31°05.03S 179°01.24W 1029
Kermadec Seamounts NIWA 2496 - - 1096
KermadecSeamounts NIWA 2535 32°35.76S 179°36W 1252
Kermadec Seamounts NIWA 2534  32°32.33S 179°39W 2312
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Ross Sea, Antarctic

Station 3, Cape Hallett - 72°17.51S 170°26.16E 300
Station 5, Cape Hallett - 72°16.92S 170°17.09E 120
A470 NIWA 3293 77°50 S 166°30E 377
A459 NIWA 3295 75°17 S 172°20E 542

Sediment cores

Bounty Trough

U939 1-2cm 44°29.66S 179°30.08E 1300
U938 6-8 cm 45°04.49S 179°30.38E 2700
U2603 0-1cm 46°38.44S 178°32.06E 2764
Q585 2.5cm 49°40.10S 177°59.50W 4354

North Pacific

RC12-422 0-1cm 54°24 N 179°37E 252
VM32-159 6-7 cm 48°40 N 147°24E 1235

North Atlantic

VM23-56 0-1cm 62°49 N 25°24 W 617
VM28-70 0-1cm 59°03 N 24°41'W 980
VM29-193 8-9 cm 55°24 N 18°44 W 1326
VM23-42 6-7 cm 62°11 N 27°56 W 1514
VM29-202 2-3cm 60°23 N 20°58 W 2658
VM29-178 2-3cm 42°51I N 25°09 W 3448

569
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