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Chapter 1

Introduction

1.1 MATLAB

MATLAB, short for Matrix Laboratory, is a numerical computing environment and programming
language originally developed by Cleve Moler. Evolving dramatically from its first release,
MATLAB is now over 30 years old and is distributed commercially by The MathWorks Inc. In
this course we will work through a number examples which are designed to help you come to
terms with the basics of MATLAB and see how you can use it in your own research. Because
MATLAB is programmable it provides an environment in which we can process scientific data
without the need to use specific software packages which are limited in the tasks they can
perform. The three main advantages of using MATLAB for your day-to-day scientific work are:

• It is an interpreted language, this means we can work step by step through a series of
commands without the need for compiling complete sets of code.

• MATLAB is based around so-called “inbuilt” functions which provide quick access to
thousands of different data processing methods.

• MATLAB contains versatile graphics libraries allowing you to view your data in a variety
of ways as it is processed.

One of the first things you’ll notice about MATLAB is that it is command driven. If you are
normally working with EXCEL you probably spend 95% of your time using the mouse and
only 5% typing on the keyboard. In MATLAB the opposite is true and whilst this might seem
annoying at first, you’ll hopefully soon come to recognize why this is necessary.

1.1.1 Obtaining a copy of MATLAB

In its distribution of MATLAB The MathWorks promotes the a system based around “tool-
boxes”. This means that MATLAB by itself is relatively cheap, but if you want to perform
specialist tasks such as statistics, image processing or optimization you can also buy specific
toolboxes which greatly enhance the methods available to you. Currently there are over fifty
different toolboxes available for tasks as diverse as modelling biological systems to fuzzy logic
and you have to pay about 400 euros for each one you use. Overall this means MATLAB can be
very expensive once you add on a number of toolboxes (although free versions of some toolboxes
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have been written and are available over the internet). Of course if you are only using MATLAB
at work then you can rely on the university’s license, otherwise you can look into the student
version of MATLAB which includes 7 toolboxes and costs only ∼100 euros.

1.1.2 Useful MATLAB books

It is estimated that over one million people use MATLAB so it is not surprising that there
are a wide variety of textbooks available (some very good and some very bad) which discuss
MATLAB in a number of contexts. Some good quality MATLAB books are available for free
and can be downloaded in pdf form. A good place to start is The MathWorks web site, which
contains a specific section for books including a subsection for the “Earth Sciences”. Two very
good books, by Cleve Moler, that you can download for free are Numerical Computing with
MATLAB and Experiments with MATLAB.

If you are going to buy a single MATLAB book I would recommend “Mastering MATLAB
7” by Hanselman & Littlefield. This book provides an introduction to nearly all aspects of
MATLAB and it is relatively cheap (the library also has a number of copies). There are also
two books available which show how MATLAB can be applied to problems in the Earth Sciences
(both of these books are also in the library):

• Data Analysis in the Earth Sciences using MATLAB by Middleton

• MATLAB Recipes for Earth Sciences by Trauth

1.1.3 Everyday help with MATLAB

The last thing to mention before we get started is that MATLAB has an amazingly detailed
help system which you can access from the software directly or over the internet. This is an
essential reference for anyone working with MATLAB with the bonus that worked-examples
are provided to show you how to perform specific tasks. MATLAB even has its own You-Tube
channel where people post videos which act as tutorials on a variety of different problems.
Finally, if you are not feeling motivated enough to visit the library you’ll find that spending a
few minutes on the internet will provide you with an almost unlimited number of free tutorials
and online classes. I typed “MATLAB tutorial” into Google and got over 250,000 hits!

1.1.4 How these notes are structured

In writing these notes I have attempt to demonstrate the workings of MATLAB using examples.
Throughout the notes your see the MATLAB examples given in a different font, for example:

This is the MATLAB example font

You can follow the examples by typing in the listed commands. There are two important
things to keep in mind when following the examples. First, this is more than a typing exercise,
it is essential that you try to understand what the commands are doing and how they work.
Second, if you get an error it is probably because you have made a typing mistake, so check
your typed commands carefully. You might also notice that there are slight differences
between the example commands given in the on-screen presentation and in this document. This
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is simply a space issue, many of the comments in the on-screen presentation are shortened so
that they will fit on a single line, in this document more extensive comments can be given.

1.2 Getting started

Find the MATLAB icon on your desktop, double click it and wait for MATLAB to start (this
may take a little time). The MATLAB desktop is quite complicated so we’ll examine it step by
step.

1.2.1 The Command Window

Most of your interaction with MATLAB will be performed by typing commands into the com-
mand window. We will issue commands at the MATLAB prompt, which looks like >>. You can
even try giving a command at the prompt, for example:

>> why

then press the enter key. You should get a slightly strange message returned on the screen.

Figure 1.1: The main MATLAB screen with the Command Window highlighted in red.

1.2.2 The Command History

This is one of the particularly useful features of MATLAB which will save you a lot of typing.
The Command History provides a sequential list of all the type commands that have been
entered into the Command Window. This means you can recall a single command or a collection
of commands and re-execute them with a click of the mouse. If you tried the why command
above you will see that it will now have appeared as the bottom item of the Command History.
Just double-click this command in the Command History and it will be re-executed in the
Command Window (and you will get a different but equally bizarre reply). The Command
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History list can also be accessed from the Command Window itself, if you place your cursor at
the >> prompt and start pressing the cursor, MATLAB will list backwards through the previous
commands. Once you have found the command you want, you can execute it by hitting the
enter key.

Figure 1.2: The main MATLAB screen with the Command History highlighted in red.

1.2.3 Workspace

This window is located in the top right corner of the screen (make sure that the Workspace
tab is selected rather than the Current Directory). Once we start to work with MATLAB this
window will keep a record of the information which is stored in MATLAB’s memory.

Figure 1.3: The main MATLAB screen with the Workspace highlighted in red.
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1.2.4 The Current Directory setting

Once we start loading data, we have to give MATLAB an idea where to look for the external
files we are interested in. If you place all you data files etc in a single location then you can
change to that directory so that MATLAB will know where to find files with specific names.

Figure 1.4: The main MATLAB screen with the Current Directory highlighted in red.
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Chapter 2

Simple operations and working with
variables

2.1 Using variables; scalars, vectors and matrices

When you start MATLAB you will see a symbol >>. This is the prompt where commands can be
given to MATLAB. Lets start with something simple, using MATLAB like a pocket calculator.
At the command prompt type:

>> 1+1

Once you press the Enter key, MATLAB will return the answer:

ans =

2

Of course we can do this with any combination of numbers and not just integers:

>> 24.7 + 2.1 + 5.6

ans =

32.4000

2.1.1 Simple scalar arithmetic

For those of you not familiar with the mathematical jargon, a scalar is simply a single number.
In MATLAB a number of operations can be used to perform arithmetic with scalars.
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Operation Symbol Example
Addition, a + b + 3 + 22
Subtraction, a - b - 90 - 54
Multiplication, a × b * 3.14 * 0.85
Division, a ÷ b / 56 / 8
Exponentiation, ab ∧ 2 ∧ 8

2.1.2 Order of evaluation

In MATLAB there is a so-called order of evaluation for different arithmetic operators. This
means that the sequence in which MATLAB performs the different parts of a mathematical
expression is fixed and we have to construct commands according to the following basic rules.

1. Parentheses (brackets), innermost first.

2. Exponentiation, left to right.

3. Multiplication and division with equal importance, left to right.

4. Addition and subtraction with equal important, left to right.

The best way to demonstrate the order of evaluation is using some basic examples. Lets take
the mean of five different numbers:

3 6 4 10 7

Of course, we need to sum the numbers and divide by 5, we could do this as two separate
steps:

>> 3 + 6 + 4 + 10 + 7

ans =

30

>> 30 / 5

ans =

6

We find the mean is 6, but from a practical point of view it is more convenient if we com-
bine the steps of the calculations together. This is where the order of evaluation is important
because we must make sure that the total of the numbers is found before the division step. For
example, if we ignore the order of evaluation:

>> 3 + 6 + 4 + 10 + 7 / 5

ans =
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24.4000

In this case we get the wrong answer because the division was performed before the addi-
tion (item 3. of the order of evaluation comes before point 4.). In order to do the calculation
properly we must employ parentheses:

>> (3 + 6 + 4 + 10 + 7) / 5

ans =

6

From the order of operation we can see that the expression in parenthesis (item 1.) will be
evaluated before the division (item 3.), so we have the correct sequence for the calculation to
be evaluated properly.
Now we’ll look at a less obvious example, which demonstrates that when two operations occur
at the same point on the order of evaluation, the one on the left will be performed first.

>> 3 / 4 * 5

ans =

3.7500

>> (3 / 4) * 5

ans =

3.7500

>> 3 / (4 * 5)

ans =

0.1500

The third result is different from the first two because the parenthesis force the multiplica-
tion to be evaluated before the division step even through it is on the right-hand side of the
expression.
Here’s a final example which employs exponentiation, we will calculate the value of 39:

>> 3 ^ 9

ans =

19683
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However, if we write:

>> 4 * 2 + 1

ans =

9

>> 3 ^ 4 * 2 + 1

ans =

163

We obtain the wrong answer because we have ignored the order of evaluation, to correct this
statement we must use parenthesis to ensure that the 4 * 2 + 1 part of the expression is eval-
uated before the exponentiation is performed:

>> 3 ^ (4 * 2 + 1)

ans =

19683

Exercises: order of evaluation

Given that 26.5 = 90.5097 can you added parenthesis to the following MATLAB expression to
obtain a value of 90.5097.

>> 12 / 4 - 1 ^ 4 - 2 + 3 * 1.5

Next can you insert only two pairs of parentheses into the following expression to again ob-
tain a value of 90.5097.

>> 4 ^ 0.5 ^ 10 - 2 ^ 1 + 1 + 0.5

2.1.3 Using named variables

Imagine you are sent to the geological hardware store to buy equipment for a fieldwork trip.
On your shopping list you have the following items you wish to buy:

• 6 Geological Hammers, cost 45.32 each.
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• 2 Compasses, cost 23.17 each.

• 9 Pocket Magnifiers, cost 4.99 each.

To find the total cost of the shopping we can use MATLAB just like a pocket calculator, with
the * symbol representing multiplication:

>> 6*45.32 + 2*23.17 + 9*4.99

ans =

363.1700

An alternative approach would be to store the number of each item in an assigned variable:

>> hammers = 6

hammers =

6

>> compasses = 2

compasses =

2

>> magnifiers = 9

magnifiers =

9

If you look at the Workspace window you will see that these assigned variables are listed in
MATLAB’s memory and we can use them to repeat the calculation:

>> hammers*45.32 + compasses*23.17 + magnifiers*4.99

ans =

363.1700

As a last step we can also assign a variable named cost to the result of our calculation:

>> cost = hammers*45.32 + compasses*23.17 + magnifiers*4.99

cost =
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363.1700

If we wanted to find the average cost of the items on the shopping list, we also need to know
the total number of items, we can perform this calculation and assign the result into a variable
called items:

>> items=hammers + compasses + magnifiers

items =

17

Remember, the variable cost is still held in MATLAB’s memory, so to find the average cost we
just perform a division using the / symbol:

>> average cost = cost / items

average cost =

21.3629

When outputting variables it is sometimes useful to use the ; symbol at the end of your expres-
sion. This means MATLAB will perform the calculation and store the result in the memory
but it will not show the result on the screen. Use of the ; symbol is essential when you dealing
with large amounts of data and you don’t want to slow down your work waiting for the screen
to list through all the results. For example:

>> average cost = cost / items

average cost =

21.3629

Compared to:

>> average cost = cost / items; %do not show the output

MATLAB won’t accept variable names which are more than one word, therefore if we try
to use average cost rather than average−cost we receive an error:

>> average cost = cost / items

??? Undefined function or method 'average'for input arguments of type 'char'.

At anytime you can see what variables are held in the MATLAB Workspace using the whos

command:

>> whos
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Name Size Bytes Class Attributes

ans 1x1 8 double

average cost1x1 8 double

compasses 1x1 8 double

cost 1x1 8 double

hammers 1x1 8 double

items 1x1 8 double

magnifiers 1x1 8 double

In turn if you want to see the information stored in a variable, type its name at the command
prompt and press Enter, for example:

>> hammers

hammers =

6

2.1.4 Rules for naming variables

As we saw in the previous example, the names assigned to variables have to follow some basic
rules. In MATLAB the rules for variable names are as follows:

• Variable names must start with a letter.

• Names can only be based on the letters A-Z & a-z, numbers 0-9 and underscore −.

• Only the first 31 characters in a variable name are recognized by MATLAB

• Names are case sensitive: name, Name, NAME are different.

2.1.5 Navigating the Command History and updating variables

In section 2.1.3 we created some variables and worked with basic commands. One of the useful
facilities provided by MATLAB is a Command History, which stores your previous commands
in the memory. The commands are recorded in full, in the order of their execution, in the
Command History window, where they can be selected using the mouse and reused by clicking
the right mouse button and choosing the Evaluate Selection option.

The Command History is also available from the command prompt, pressing the up cursor
key will cycle through your previous commands. After a long MATLAB session you may wish
to recall a much earlier command quickly, this can be done by typing the beginning of the
command and using the up cursor key. In this case MATLAB will only cycle through the
previous commands which started with the same beginning.
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Lets return to the example of shopping at the geological hardware store, which we used in
section 2.1.3. We have now decided that we would like to buy 7 geological hammers rather
than 6, to update our calculations we must first change the values of the variable hammer. We
can recall the command we used to set the variable simply by typing the first few letters and
pressing the up cursor key:

>> ham Now press the up cursor

>> hammers*45.32 + compasses*23.17 + magnifiers*4.99

This is the last command to begin with ham, but it’s not the one we want so we press the
up cursor again.

>> hammers = 6

This is the command we want, simply modify it to the new value and press enter.

>> hammers = 7

hammers =

7

It is important to realize that although we have changed the value of hammers, the other
variables which depend on it, for example cost and items, have not been updated to take the
new value into consideration. Therefore to update the other variables we have to repeat the
calculations we performed earlier. This is where the Command History is useful, because we
don’t need to type the commands again, we can simply recall them.

>> cost = hammers*45.32 + compasses*23.17 + magnifiers*4.99

cost =

408.4900

>> items=hammers + compasses + magnifiers

items =

18

>> average cost = cost / items

average cost =

22.6939
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2.1.6 Simple Arrays

In many cases we would like to use variables that contain more than a single number, these
are arrays. Arrays can be rows or columns of numbers (called vectors) or higher dimensional
matrices (two-dimensions or higher). To form an array in MATLAB you should use the square
bracket symbols [ and ]. First lets make a row vector which contains the numbers 12, 35.2, and
65.

>> x = [12 , 35.2 , 65]

x =

12.0000 35.2000 65.0000

The , symbol places the numbers in a row. To place the numbers in a column use the ;

symbol:

>> x = [12 ; 35.2 ; 65]

x =

12.0000

35.2000

65.0000

There are a number of shortcuts when making vectors, for example, we can produce a row
vector which contains numbers starting at 0.8 and finishing at 1.4 spaced at 0.15 intervals:

>> x = [0.8 : 0.15 : 1.4]

x =

0.8000 0.9500 1.1000 1.2500 1.4000

Note the use of the : operator to tell MATLAB to make an equal interval array. To make
a column with the same numbers we have to add the transpose command ' after the square
brackets:

>> x = [0.8 : 0.15 : 1.4]'

x =

0.8000

0.9500

1.1000

1.2500

1.4000
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If we have a long vector we may only be interested in certain parts of it, we can access those
parts using an index number. Index numbers represent specific positions within an array start-
ing from the first position which is given an index of 1. For example if we want to know the
value of x at a given position:

>> x = [0.8 : 0.15 : 1.4];

>> x(3) %return the 3rd element of x

ans =

1.1000

>> x(5) %return the 5th element of x

ans =

1.4000

>> x(1:3) %the 1st through 3rd elements of x

ans =

0.8000 0.9500 1.1000

>> x([1 , 4 , 3]) %return the 1st, 4th and 3rd elements of x

ans =

0.8000 1.2500 1.1000

>> x([1 : 2 : 5]) %return the 1st, 3rd and 5th elements of x

ans =

0.8000 1.1000 1.4000

Currently the variable x holds five elements, so if we ask for the sixth we will get an error
because we are looking for a position which does not exist:

>> x(6) %return the 6th element of x

??? Index exceeds matrix dimensions.

You can also perform arithmetic between vectors and scalars. Construct a column vector,
x, and then perform some simple calculations with it and a scalar, producing an output row
vector y:
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>> x = [0.8 : 0.15 : 1.4]';

>> y = x + 2 %Addition of 2 to all the elements in x

y =

2.8000

2.9500

3.1000

3.2500

3.4000

>> y = x - 3 %Subtraction of 3 from all the elements in x

y =

-2.2000

-2.0500

-1.9000

-1.7500

-1.6000

>> y = x * 1.2 %Multiply all elements by 1.2

y =

0.9600

1.1400

1.3200

1.5000

1.6800

>> y = x / 2.5 %Divide all the elements by 2.5

y =

0.3200

0.3800

0.4400

0.5000

0.5600

>> y = x(1:2) + 5 %Add five to the first two elements

y =

5.8000
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5.9500

The last type of array we will consider is the matrix which is a two or high dimensional array.
The two dimensional matrix contains rows and columns. To construct a matrix we can use the
, (row command) and ; (column command) operators. Note the use of the ; symbol to start
a new row.

>> x = [1 , 2 , 3 , 4 ; 5 , 6 , 7 , 8]

x =

1 2 3 4

5 6 7 8

When making a matrix all the rows must have the same number of columns (as above where
each row has 4 elements). If you try to make a matrix with rows of different lengths an error
will be returned.

>> x = [1 , 2 , 3 , 4 ; 5 , 6 , 7 , 8 , 9]

??? Error using ==> vertcat

CAT arguments dimensions are not consistent.

A matrix has both rows and columns, so to select elements we must use both row indices
and column indices. The row index is always specified first, then the column index.

>> x = [5.4 , 7.1 , 3.3 , 2.8 ; 1.4 , 6.9 , 9.2 , 3.4]

x =

5.4000 7.1000 3.3000 2.8000

1.4000 6.9000 9.2000 3.4000

>> x(2,1) %return the element in the 2nd row and 1st column

ans =

1.4000

>> x(1,3) %return the element in the 1st row and 2nd column

ans =

3.3000

>> x(2,:) %return all the elements in the 2nd row

ans =
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1.4000 6.9000 9.2000 3.4000

>> x(:,4) %return all the elements in the 4th column

ans =

2.8000

3.4000

2.1.7 Array-Scalar and Array-Array Arithmetic

When performing addition and subtraction on arrays you must either use an array and a scalar
together or two arrays of the same size. As a first example we will create a matrix and add a
scalar to each of its entries.

>> x = [5.4 , 7.1 , 3.3 , 2.8 ; 1.4 , 6.9 , 9.2 , 3.4]

x =

5.4000 7.1000 3.3000 2.8000

1.4000 6.9000 9.2000 3.4000

>> x + 1 %add 1 to each entry in x

ans =

6.4000 8.1000 4.3000 3.8000

2.4000 7.9000 10.2000 4.4000

Addition of two arrays of the same size means they are added together element by element:

>> x + [1 , 2 , 3 , 4 ; 5 , 6 , 7 , 8]

ans =

6.4000 9.1000 6.3000 6.8000

6.4000 12.9000 16.2000 11.4000

Of course, subtraction will work in the same way. Addition or subtraction of arrays with
different sizes will cause an error:

>> [1 , 2 , 3 ] + [5 , 6 , 7 , 8]

??? Error using ==> plus

Matrix dimensions must agree.
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There are two types of multiplication and division; element by element and matrix. With
arrays of the same size element by element multiplication, division and exponentiation uses the
. operator. We’ll form two matrices and then perform some element by element operations.

>> x = [1 , 1 , 1 ; 2 , 2 , 2]

x =

1 1 1

2 2 2

>> y = [1 , 2 , 3 ; 4 , 5 , 6]

y =

1 2 3

4 5 6

>> x.*y %element by element multiplication

ans =

1 2 3

8 10 12

>> x./y %element by element division

ans =

1.0000 0.5000 0.3333

0.5000 0.4000 0.3333

>> x.^y %element by element exponentiation

ans =

1 1 1

16 32 64

If you don’t use the . operator MATLAB will perform matrix multiplication or division, but
the arrays must be of the correct size, for example if we try to multiply the arrays x and y:

>> x*y %matrix multiplication of x and y

??? Error using ==> mtimes

Inner matrix dimensions must agree.

23



>> x = [1 , 1 , 1 ; 2 , 2 , 2]'

x =

1 2

1 2

1 2

>> x * y %matrix multiplication of x and y

ans =

9 12 15

9 12 15

9 12 15
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Chapter 3

MATLAB Functions

3.1 Script M-files and the MATLAB Editor

As you can probably see already, when working with commands in MATLAB you will often
want to repeat and change specific things as you develop your code. The best way to do this
is using the built-in M-Editor to work with a sequence of commands which you can execute at
any time. The commands can be stored in an M-file (with the extension *.m), so you can keep
a record of your work and gradually develop the code. To create a new M-file:

1. Click on File in the main MATLAB window

2. Select New

3. Select M-file

the editor will appear with a blank document. We can now store our commands here (they must
be kept in the correct sequence) and execute them at anytime by giving the name of the M-file
in the command window, or highlighting specific commands with the mouse, giving a right-click
and choosing “evaluate selection”. I have made an example M-file with the commands we used
in the previous example, it has the name shopping.m and can be loaded from the command
window by typing:

>> open shopping

Using the editor provides us with a much more flexible way to issue commands to MATLAB,
we can review the overall structure of a piece of code and gradually make modifications and im-
provements. Within the editor we can also add comments to the M-code, these are notes which
MATLAB will ignore but provide a description of the code to remind us what is happening.
Once we place a % symbol in the code, MATLAB will ignore the remainder of the line. The
editor highlights comments in green, you can see an example of comments in the shopping.m

file.

Listing of shopping.m:

hammers = 6 %define number of hammers
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compasses = 2 %define number of compasses

magnifiers = 9 %define number of magnifiers

%in the next line sum the total cost

cost = hammers*45.32 + compasses*23.17 + magnifiers*4.99

items = hammers + compasses + magnifiers %number of items

average cost = cost /items %calculate average cost

3.2 Working with “inbuilt” functions

The real power of MATLAB comes from its thousands of inbuilt functions. Each function is
a sequence of MATLAB commands which will perform a specific task. Each function has a
specific set of input and outputs according to the information it requires and the result it will
produce. Later we will look at how we can write our own functions to perform a given task,
but for the time being we will look at inbuilt functions to understand how they work.

3.2.1 Taking the square root

To find the square root of a number is simple and we could use standard MATLAB arithmetic
commands. For example to find the square root of 9:

>> 9^0.5

ans =

3

We can perform the same task on a vector as long as we use the element by element ap-
proach:

>> [9 , 16 , 25].^0.5 %note the use of the dot

ans =

3 4 5

This is easy enough, but MATLAB also contains an inbuilt function called sqrt which can
perform this task for us. To use a function we give its name at the command line and place
the input within brackets. The input can be a series of numbers, a variable or an expression
including other variables, finally the output of the function can also be assigned a specific vari-
able name.

>> sqrt(9)

ans =
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3

The sqrt function can also be used for vectors, matrices and expressions:

>> x = [9 , 16 , 25]

x =

9 16 25

>> sqrt(x)

ans =

3 4 5

>> y = sqrt(2*x+4) %assign the output to y

y =

4.6904 6.0000 7.3485

3.2.2 The help command

If you want information on what a function does and what its inputs and outputs should be
then you can used MATLAB’s help system. Simply give the help command followed by the
name of the function you are interested in. This will provide detailed information on what the
function does, other related functions which might also be useful, and a link to the function’s
page in the help documentation.

>> help sqrt

SQRT(X) is the square root of the elements of X. Complex

results are produced if X is not positive.

See also sqrtm, realsqrt, hypot.

Overloaded functions or methods (ones with the same name in other directories)

help sdpvar/sqrt.m

help ncvar/sqrt.m

help sym/sqrt.m

Reference page in Help browser
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doc sqrt

3.2.3 Finding the right function

As I mentioned above, MATLAB has thousands of inbuilt functions and sometimes it can be
difficult to guess the name of the function you need to perform a certain task. In these situa-
tions the lookfor function is useful, because it will search for specific keywords within all the
available functions and return a list of matches. For example, if we want to take the square
root of a number but we don’t know the name of the function to use, we can use the lookfor

function to get a list of possibilities:

>> lookfor('square root')

HYPOT Robust computation of the square root of the sum of squares

REALSQRT Real square root.

SQRT Square root.

SQRTM Matrix square root.

ipexConformalForward1 Forward transformation with positive square root.

ipexConformalForward2 Forward transformation with negative square root.

SQRT Symbolic matrix element-wise square root.

Lets take a slightly more complicated example. We want to generate a matrix with 3 rows and
2 columns that contains random numbers taken from a normal distribution. Our first step is to
search for a function which can perform this task:

>> lookfor('random numbers')

RAND Uniformly distributed pseudo-random numbers.

RANDN Normally distributed random numbers.

RANDG Gamma random numbers (unit scale).

From the list it looks like the function randn will provide us with random numbers from a
normal distribution. Next we’ll look at its help entry to get more details concerning the inputs
we should use:

>> help randn

RANDN Normally distributed random numbers.

R = RANDN(N) returns an N-by-N matrix containing pseudo-random values

drawn from a normal distribution with mean zero and standard deviation

one. RANDN(M,N) or RANDN([M,N]) returns an M-by-N matrix. RANDN(M,N,P,...)

or RANDN([M,N,P,...]) returns an M-by-N-by-P-by-... array. RANDN with

no arguments returns a scalar. RANDN(SIZE(A)) returns an array the

same size as A.
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This tells us the the function will return a matrix of normally distributed random numbers,
the first input to the function is the number of rows for the matrix and the second is the num-
ber of columns (remember we wanted 3 rows and 2 columns). We’ll name our output from the
function z.

>> z = randn(3,2)

z =

-0.4326 1.1909

-1.6656 -1.1465

0.1253 0.2877

3.2.4 Multiple inputs and outputs

It is also possible for functions to work with multiple inputs and outputs. A good example is
the sortrows function which sorts a matrix of values from lowest to highest based on the values
in one of its columns. The primary output of the function is the sorted matrix, but a secondary
output giving the index of the sorted values is also available. First we will sort the random
numbers in z according to the values in the first column (if we don’t specify which column to
base the sort upon, MATLAB will automatically use the first).

>> y = sortrows(z) %sort the rows according to the first column

y =

-1.6656 -1.1465

-0.4326 1.1909

0.1253 0.2877

Now we’ll also use the second (optional) output of the function that records the original indices
of the sorted values (which we will call idx). Note that in order to obtain multiple outputs we
have to group them together in square brackets when calling the function:

>> [y,idx] = sortrows(z) %sort the rows by the first column and return the indices

y =

-1.6656 -1.1465

-0.4326 1.1909

0.1253 0.2877

idx =
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1

3

Finally, we’ll supply the function with a second (optional input argument) which gives the index
of the column upon which the sort should be based. In this case we will sort according to the
values in the second column:

>> [y,idx] = sortrows(z,2)

y =

-1.6656 -1.1465

0.1253 0.2877

-0.4326 1.1909

idx =

2

3

1

3.3 Exercise: Mmmm, π

Now it’s your turn. Throughout the class we will attempt to solve problems using MATLAB
by applying the topics which have been discussed. Some of you may find them relatively easily
(especially if you have some experience of MATLAB) and others will find them more difficult. I
have specifically designed the exercises to be challenging, so don’t expect to finish them within
a few minutes. It is important to realize that MATLAB is a tool and will only help you to solve
a problem if you know how the problem should be solved. The first question you should ask
yourself is “what method will I used to solve the problem?” and only then should you think
about “how can I implement my method in MATLAB?”. For this first exercise we are going to
look at a simple numerical problem involving π.

Approximating π

The value of π has a very simple definition, “the ratio of a circle’s circumference to its diameter”,
but it is irrational number, meaning its decimal representation never ends or repeats.
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Figure 3.1: The π pie. If the pie is a perfect circle then the ratio of its circumference (red line)
to its diameter (blue line) is equal to π

.

Determining a more and more accurate evaluation of π is still an active area of research,
current estimates have a precision of over 100000000000 decimal places (at the beginning of
2010 Fabrice Bellard announced that he had calculated π to 2.7 trillion digits). To give you a
flavor of what some people’s research involves, the first 1000 digits of π are:

3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280
348253421170679821480865132823066470938446095505822317253594081284811174502841027019385
211055596446229489549303819644288109756659334461284756482337867831652712019091456485669
234603486104543266482133936072602491412737245870066063155881748815209209628292540917153
643678925903600113305305488204665213841469519415116094330572703657595919530921861173819
326117931051185480744623799627495673518857527248912279381830119491298336733624406566430
860213949463952247371907021798609437027705392171762931767523846748184676694051320005681
271452635608277857713427577896091736371787214684409012249534301465495853710507922796892
589235420199561121290219608640344181598136297747713099605187072113499999983729780499510
597317328160963185950244594553469083026425223082533446850352619311881710100031378387528
8658753320838142061717 7669147303598253490428755468731159562863882353787593751957781857
7805321712268066130019278766111959092164201989

Over time people have used a number of different approximations for π, a popular one is 22
7

.
Probably the strangest is a legal bill which was proposed in 1897 that would set pi = 3.2 in
order that people could remember it more easily. There is a long history of methods with which
to approximate π, one of the most elegant of which was given in the 14th century by the Indian
mathematician Madhava of Sangamagrama (interestingly the technique was “rediscovered” in
Europe over 300 years later). Madhava of Sangamagrama showed that π

4
could be obtained as

the sum of an infinite series:

∞∑
n=0

(−1)n

2n+ 1
=
π

4

Therefore if we work with the first 4 terms, for n=0 to n=3 and ultimately working to infinity
we would get:
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(−1)0

2 ∗ 0 + 1
+

(−1)1

2 ∗ 1 + 1
+

(−1)2

2 ∗ 2 + 1
+

(−1)3

2 ∗ 3 + 1
+ . . .

(−1)∞

2 ∗∞+ 1
=
π

4

the beginning of which simplifies to:

1− 1

3
+

1

5
− 1

7
+ . . . =

π

4

We’re going to use this approach to estimate π in MATLAB. Obviously we can’t calculate an
infinite number of terms so we’ll only work to a maximum of n = 10000. One function you
might find useful is sum, look at its help entry to get more information about its use. For those
of you familiar with MATLAB this exercise won’t be too much of a challenge so you should try
to perform same task whilst playing MATLAB “golf”. That is, what is the smallest number of
characters you can use in your code to make the calculation (mine was 30 characters). I would
recommend that you work in the editor in order that you can develop and modify your code
more easily.

Steps to completing the exercise

There are three main tasks to solve this exercise:

1. Generating the numbers between 0 and 10000 to act as n.

2. Calculating the terms of the series using the values of n.

3. Finally, summing the series and multiplying by 4 to estimate π.

Functions you may find useful

• sum - Sum of array elements.

3.4 Writing your own functions

One of the great advantages of MATLAB is the capacity to write your own functions with
specific inputs and outputs. This means you can design and write your own processing routines
which can be used over and over again with no additional effort (always a good thing!).

3.4.1 Inline functions

If you have a simple expression with a single output you can define it as an inline function so
that it can be used repeatedly without retyping the code. For example, imagine we want to
study the equation for a variety of values f and θ:
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g = sin(2 ∗ π ∗ f + θ)

We can use the inline function to define this expression and its input, so that it can be called
repeatedly. Note that during the definition of the inline function the expression and input vari-
able names are defined as character strings.

>> g = inline('sin(2*pi*f + theta)', 'f', 'theta')

g =

Inline function:

g(f,theta) = sin(2*pi*f + theta)

>> g(0.5,pi./4)

ans =

-0.707106781186547

Inline functions are useful for simple expressions, but in more complex situations it is necessary
to create an M-function.

3.4.2 M-functions

It is simple to write your own M-functions with specific input and outputs. An M-function is
a separate M file (normally written in the MATLAB editor), which is a sequence of MATLAB
commands, working with provided inputs and producing a specific output. The key to an
M-function is the first line of the function, which defines 4 things in order:

1. That the file contains a function

2. The output variables of the function

3. The name of the function

4. The input variables of the function

We’ll start with a example of a function called simple, which has one input x and one output
y. The operation of the function takes the value of x, adds one to it and outputs the result as
y. Start a new M-file in the editor and enter the following text.

function y=simple(x)

y=x+1;
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When you try to save the function, MATLAB will suggest the same name as you defined for the
function (simple.m). When searching for a function MATLAB actually refers to the filename
rather than the defined name inside the function, so it’s essential that they match each other.
Now we can call the function simple in the same way as any other MATLAB function. For
example:

>> x = 5

>> y = simple(x)

y =

6

The the names of the input, x, and output, y, are only used within the function, so when
we are calling the function externally (i.e. from outside) we can use any names we want. For
example:
>> a = 5

>> b = simple(a)

b =

6

One of the advantages of M-functions is that all the variables which may be created by the
intermediate steps of the function will not be stored in the MATLAB memory once the calcula-
tion is complete, only the output is stored. This makes functions a very tidy way of performing
certain tasks because only the output is stored. We can set multiple inputs and outputs sim-
ply by adding them to the first line of the function. The next function we’ll write is called
simple2.m, which takes two inputs c and d and gives two outputs, e which is the difference of c
and d, and f which is the sum of c and d. Note that comments can also be included to explain
the steps of the function.

function [e,f]=simple2(c,d)

e = c - d; %find the difference

f = c + d; %find the sum

Now we must supply two input names and two output names. For example:

>> cats=7;

>> dogs=4;

>> [shirt,socks]=simple2(cats,dogs)

shirt =

3
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socks =

11

Hopefully this will convince you that you can use any variable names, of course it is always best
to use meaningful names which describe the variable.

Including help and comments

One key aspect of writing functions is including detailed help so that other people can use your
function and comments which show how the calculations are performed. Often you will write
a function and after not looking at it for a few months you will have forgot how it works or
how to use it. In these situations the help information and comments are invaluable. Help is
entered after the first line of the file and is basically a series of comments, however, because of
their position MATLAB can find them whenever you use the help or lookfor functions.
We take an example from probably the worlds most famous equation, the mass-equivalence
relationship:

E = mc2

where E is energy, m is mass and c is the speed of light. We can write a vanilla function (i.e.
the most simple form) without help or comments.

function E=massequiv0(m)

c = 299792458;

E = m*c^2;

In this form the function will work and return the correct answer. It is obvious what is hap-
pening because we are only performing a simple operation. However some functions require
thousands of lines of code, thus it is very easy to become lost and the meanings of different
variable names maybe obscure. Therefore it is always a good idea to include some comments
that describe what is happening in the different lines of code. For an equation such as this it is
also a good idea to state which units are being used.

function E=massequiv1(m)

c = 299792458; %speed of light [m s^-1]

E = m.*c.^2; %calculate the energy in Joules [kg m^2 s^-2]

Things are starting to improve, but we still have to include the help information. The help is
essential because it describes what the function does and what the different inputs and outputs
represent.
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function E=massequiv2(m)

%massequiv2 - Find energy from mass based on Einstein (1905)

%

% Syntax: energy = massequiv2(mass)

%

% Inputs:

% m - mass [kg]

%

% Outputs:

% E - equivalent energy [Joules or kg m^2 s^-2]

%

% Other m-files required: none

% Subfunctions: none

% MAT-files required: none

%

% Author: Dave Heslop

% Department of Geosciences, University of Bremen

% email address: dheslop@uni-bremen.de

% Last revision: 6-Dec-2008

%------------- BEGIN CODE --------------

c = 299792458; %speed of light [m s^-1]

E = m.*c.^2; %calculate the energy in Joules [kg m^2 s^-2]

%------------- END CODE --------------

With the help information in place we can use the lookfor and help functions:
>> lookfor Einstein

>> help massequiv2
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3.5 Exercise: Mmmm, a second helping of π

In this exercise simply convert the script file you created for the evaluation of π into a M-function.
The input for the function should be N, the number of terms to include in the evaluation and
the output p is the final evaluation of π. Don’t forget to include help and comments.

Steps to completing the exercise

There are three main tasks to solve this exercise:

1. Add a header line defining the function name (madhava), the input (N) and
output (p).

2. Define the values of n to be used as ranging between 0 and N

3. Add suitable help and comments (see previous examples)

Functions you may find useful

• sum - Sum of array elements.
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3.6 Exercise: The Geiger counter

Often a Geiger counter will be used to measure the radioactivity of rocks. One problem with
simple Geiger counters is that at high activity (high count rates) they will underestimate the
true activity. This is because after a γ-ray enters the detector the system is “dead” for a short
period of time during which it cannot measure. If another γ-ray enters the system during this
dead-time it will not be counted and thus the observed count rate will be less than the true
count rate. This situation is made worse because not only are the γ-rays which enter during
the dead-time not counted, they do extend the dead-time.

Figure 3.2: How can we find the true count rate of a Geiger counter which suffers from dead-
time.

The relationship between the observed count rate (Nobs) and the true count rate (Ntrue) is
an exponential law equation:

Nobs = Ntruee
−Ntrueτ

where τ is the dead-time per pulse (20 x 10−6 seconds in old instruments). Note this is a
transcendental equation which means that it cannot be rewritten in the form Ntrue = .... In this
exercise you will write an M-function to determine the value of Ntrue for a given input value of
Nobs and τ .
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Steps to completing the exercise

When writing your M-function you will need to think about the inputs and outputs
the function will require. The required inputs should follow the basic lines of:

• The observed count rate (called Nobs)

• The dead-time (called tau)

• The array of integer count rate values to test (called Ntest)

For the calculation itself we need to determine the calculated count rate Ncalc for each
of the guesses in Ntest and then find which one fits best with the observed count rate,
Nobs. This will involve the following steps:

1. Determine the values of Ncalc which would be measured for your values of Ntrue.

2. Determine which value of Ncalc is closest to the value of Nobs measured on the
Geiger counter.

3. Output the value of Ntest corresponding to the best prediction of Nobs.

Functions you may find useful

• exp - Exponential

• sort - Sort array elements in ascending or descending order.

• sqrt - Square root
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Chapter 4

Relational and logical operators

4.1 Relational and logical operations

The purpose of relational and logical operators is to provide answers to True/False questions.
To represent this idea numerically MATLAB uses a system based on:

• True = 1

• False = 0

4.1.1 Relational testing

As an example, relational operators can be used to test if two numbers are equal, or if one
number is greater than another. MATLAB uses the following relational operators:

Relational Operator Description
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
∼= not equal to

These operators can be used to compare both scalars and arrays. For example, working with
scalars:

>> A = 5;

>> B = 6;

>> A == B %test if A is equal to B

ans =

0
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>> A ∼= B %test if A does not equal B

ans =

1

>> A >= B %test if A is greater than or equal to B

ans =

0

>> A < B %test if A is less than B

ans =

1

When we work with arrays the relationships are tested on a element-by-element basis. The
output will be the same size as the array being tested, with the position of ones and zeros in
the output corresponding to the elements being tested:

>> A = [1:1:5]

A =

1 2 3 4 5

>> B = [5:-1:1]

B =

5 4 3 2 1

>> A >= 4 %positions where A is greater-than or equal to 4

ans =

0 0 0 1 1

>> A == B %positions where A equals B

ans =

0 0 1 0 0

>> B < A %positions where B is less-than A
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ans =

0 0 0 1 1

In the case where the two arrays are not the same size, MATLAB will return an error be-
cause it is not possible to perform an element-by-element comparison:

>> A = [1:1:4]

A =

1 2 3 4

>> B = [1:1:3]

B =

1 2 3

>> A == B

??? Error using ==> eq

Matrix dimensions must agree.

A particularly useful function which extends the use of the relational operators is find. This
function returns the indices of positions within an array which return a True from the test
relation. In the following example we’ll use find to locate the numbers in the array which are
greater than or equal to three:

>> A = [5:-1:1]

A =

5 4 3 2 1

>> idx = find(A>=3) %index of values less than or equal to 3

idx =

1 2 3

>> A(idx) %test the result by calling the indexed values

ans =

5 4 3
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4.1.2 Logical Operators

Logical operators allow us to combine a series of relational expressions. In this way we can
specify in detail a series of relations which a given number must meet or not meet.

Logical Operator Description
& AND
| OR
∼ NOT

As a first example we’ll compare to vectors A and B to find where A is greater than B, with the
added condition that the only results which are acceptable are those where A does not equal 5.

>> A = [1:1:5]

A =

1 2 3 4 5

>> B = [5:-1:1]

B =

5 4 3 2 1

>> A > B & A∼=5 %find A is greater than B and A does not equal 5

ans =

0 0 0 1 0

We can see from this result that the fifth element of A meets the first requirement (>B), but not
the second (∼=5), so a result of False is returned. Only the fourth element of meets both re-
quirements. The logical operators can also be included when using the find function. We’ll work
with the same variable B, and find the values which are less than or equal to 2 or greater than 4.

>> idx = find(B<=2 | B>4)

idx =

1 4 5

>> B(idx) %check the result

ans =
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5 2 1

4.1.3 Controlling the flow of your code

Relational operators are very useful for deciding on specific routes your code should take. For
example, depending on a specific property of a variable you may wish to perform different calcu-
lations. MATLAB has a number of inbuilt keywords which allow you to control the flow of your
code. The simplest example is if, which provides a switch to determine if a certain operation
should be performed. In the next example we will test if a number is greater than 6.5, if it is
then we will subtract a value of 3.1 from it.

>> C = 7.1; %set our value to be processed

>> if C > 6.5 %relational operator

C = C - 3.1; %when True perform the calculation

>> end %end of the code relating to the if-statement

>> C %display the result

C =

4.0000

You can see MATLAB highlights the keywords in blue. In this case the value of C returned
True when compared to the relational operator so the code between the if statement and the
end statement was executed. If C had been a value which would have returned a False then the
code between the if statement and the end statement would have been ignored. For example:

>> C = 6.1; %set our value to be processed

>> if C > 6.5 %relational operator

C = C - 3.1; %when True perform the calculation

>> end %end of the code relating to the if-statement

>> C %display the result

C =

6.1000

As above the conditions for the if statement can be constructed from as many relational
operators linked by logical operators as you want. We can add to the if statement using the
keyword else. This provides an alternative procedure which should be performed when the
relational operator in the if statement is found to be False. We’ll extend our example from
above so that if the input value is less than or equal to 6.5 a value of 9.3 is added to it.
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>> C = 6.1; %set our value to be processed

>> if C > 6.5 %relational operator

C = C - 3.1; %when True perform the calculation

else %enter the alternative for a False

C = C + 9.3;

>> end

>> C %display the result

C =

15.4000

Our value of 6.1 returned False when tested against the relational operator at the if statement,
so the code corresponding to the else statement was executed. We can even make these alter-
native pieces of code conditional using the elseif statement and a further relational operator.
We’ll modify the above example in order that 9.3 is only added to the value if the starting
number is less than 2.4.

>> C = 6.1; %set our value to be processed

>> if C > 6.5 %relational operator

C = C - 3.1; %when if is True perform the calculation

>> elseif C < 2.4 %enter the alternative condition

C = C + 9.3; %when elseif is True perform the calculation

>> end

>> C %display the result

C =

6.1000

4.1.4 For Loops

There are a number of other ways of controlling the flow of your code, for example the for

command which is very useful when we want to repeat the same operation a specific number
of times. For loops are commonly used in other programming languages such as FORTRAN
to repeat specific tasks, they are also possible in MATLAB but computationally expensive, so
they should be avoided when possible. For loops depend on a variable which is set as a counter
that will run for a specific number of cycles. For example, we’ll use a counter i which will loop
between the value of 1 and 5, for each cycle of the loop we will print the value of i on the screen.

>> for i=1:5

i %print the value of i on the screen

>> end

i =
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1

i =

2

i =

3

i =

4

i =

5

We can see that the loop repeats between the for and end statements for each value of i,
we can set as many i values and in any sequence we want. For example:

>> for i=[3 7 -1]

i %print the value of i on the screen

>> end

i =

3

i =

7

i =

-1

For a more complicated example we will return to our approximation of π. If you remem-
ber we employed the infinite series of Madhava of Sangamagrama who showed that π

4
:

∞∑
n=0

(−1)n

2n+ 1
=
π

4

Therefore if we work with the first 4 terms, for n=0 to n=3 and ultimately working to infinity
we would get:

(−1)0

2 ∗ 0 + 1
+

(−1)1

2 ∗ 1 + 1
+

(−1)2

2 ∗ 2 + 1
+

(−1)3

2 ∗ 3 + 1
+ . . .

(−1)∞

2 ∗∞+ 1
=
π

4

We can easily perform this calculation within a for loop, which the value of n increasing from
0 to 10000. For each iteration we will simple add the new term to the existing estimate of π.

>> p=0; %set our starting estimate to 0

>> for n=0:1e5 %loop between 0 and 10000
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pnew=((-1).^n./(2*n+1))*4; %find the newest term

p=p+pnew; %add the new term to the estimate

>> end %end the loop

>> p =

3.1416

One particularly useful feature of loops is that you can use the counter variable as an in-
dex to place data into an output variable. In this next example we want store each term of the
series into an output array.

>> pterm=zeros(1e5,1); %setup an output array with zeros

>> for n=0:1e5 %loop between 0 and 10000

pterm(n+1)=((-1).^n./(2*n+1))*4; %note the index is n+1

>> end %end the loop

>> pterm %view the output on the screen

We now have each term stored in sequence in variable pterm. Note that because the index
of the first position in a MATLAB array is 1, but out first value of n is 0, we always have to
use an index of n+1.

4.2 Exercise 1: Classifying sediments

Often sediments are grouped according to their grain size. In this example we’ll look at the
grain size fractions corresponding to:

• Sand, particles with sizes greater than 1/16 µm and less than 2 µm

• Silt, particles with sizes greater than 1/256 µm and less than 1/16 µm

• Clay, particles with sizes less than 1/256 µm

Data for 100 samples is stored in the file grainsize.mat, which contains a 100 x 3 matrix of
data called gs. The numbers in the matrix correspond to the percentage of sand (first column),
silt (second column) and clay (third column), where each sample is represented by one row
(therefore each row of the matrix adds to 100%). Use the relational and logical operators we
discussed above to answer the following questions.

1. How many samples contain more than 50% sand?

2. How many samples contain more than 50% silt?

3. How many samples contain more than 30% silt or more than 25% clay?

4. How many samples contain more than 40% sand, less than 40% silt and more than 40%
clay?
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Steps to completing the exercise

This exercise is pretty simple but is relies on two things:

• Correctly selecting the column of the data matrix which corresponds to the grain
size fraction you are interested in.

• Constructing relational and logical operators to test which samples fulfill the
given criteria.

To determine the number of samples which fulfill the a criteria you can either:

1. Find the sum of the array returned by the logical operator (i.e. add up the 1s
and 0s).

2. Use the find function to return the index positions of the samples which meet
the criteria and then determine the total number of returned positions.

Functions you may find useful

• sum - Sum of array elements.

• numel - Number of elements in array.

4.3 Exercise 2: The Safe Cracker

We’re going to write a function that simulates trying to find the code which will open a safe full
of money. The safe has a three-digit combination which must be entered into the function and
the output must say wether the safe stays locked or opens (you can represent this numerically,
for example a returned 0 represents “locked”, a 1 represents “open”).
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Figure 4.1: The safe requires the correct 3 digit combination to be opened
.

Our safe, however, has a slight design problem which will help us to find the combination.
The safe will tell us which digits are wrong and which are correct, for example:

The first digit is incorrect.

The second digit is correct.

The third digit is incorrect.

You can send text messages to the MATLAB command window using the function disp. Write
an M-file using logical operators which will simulate this safe.
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Steps to completing the exercise

This exercise as a whole has a number of things you must consider beyond simply how
to test if a series of numbers are the same or not:

• Handling input (the guess of the combination) and output (indicator if the safe
opens or not).

• Testing the guessed combination against the true combination.

• Determining if the safe should open or not.

You can approach these different parts using the various topics we have studied in the
past chapters:

1. Input and output can be handled by constructing an M-function.

2. Testing if the digits of the guessed combination and true combination are the
same can be performed using relational operators.

Functions you may find useful

• disp - Display text or array.

As a simple example here is a script with which we can test if two numbers A and B
are the same and output the result to the screen. You should be able to adapt this
example for your own solution:

A=5

B=6

if A==B

disp(’The numbers are the same’)

else

disp(’The numbers are different’)

end

4.3.1 An even worse safe

Once you have written your function, modify it so that the guess does not need to be so accurate
for the lock to open. Construct the function so that a guessed digit only has to be within ±1
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of the true number in order for it to be accepted as correct.

Steps to completing the exercise

This exercise only requires some simple modifications to your previous M-function. It
might be a good idea to save your modified function with a new name so you don’t
overwrite your previous work. For the previous exercise you tested if the guessed digits
were equal to the true combination, now you need to check if the guess digit is within
±1 of the true combination. In other words you must test if a digit is greater than or
equal to the the true digit minus 1 and less than or equal to the true digit plus 1, so
you’ll need to use a logical operator to test both cases simultaneously.
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Chapter 5

Input / Output and data management

How can we import and export data from the MATLAB workspace? This can be a surprisingly
complicated question to answer and depending on what kind of data you are working with you
may want to consider a number of different approaches. Of course the advantage of MATLAB
is that once you have found the best way to import your data you can write a function which
will perform the task automatically.

5.1 Import

We’ll look at the following ways in which you can import your data into MATLAB.

• Copy and Paste.

• Loading from an ASCII text file.

• Low-level I/O functions.

• Import from an EXCEL workbook.

• Reading from a NetCDF file.

Each of these methods has both advantages and disadvantages, so often it is best to give a little
thought as to which technique will work best for your data. One important thing to remember
is that MATLAB cannot mix text and numbers, so you can’t have column headers as you would
have in EXCEL.

5.1.1 Copy and Paste

This is probably the simplest import method but it is also the most cumbersome. We’ll use the
function clipboard (which requires the Sun Microsystems Java software) to paste copied data
into MATLAB. Open the file I0 example1.txt in a text editor such as Notepad or Wordpad,
select the data and copy it.
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Figure 5.1: The example data in text file IO example1.txt.

We can now paste the data from the clipboard with the command:

>> data = clipboard('pastespecial')

The import wizard will appear that allows you to check that your data looks okay. If you are
satisfied then click Next> and then Finish.

Figure 5.2: MATLAB’s import wizard allows us to review the copied data

This has created a structural array (an advanced type of data array which we won’t be
discussing in detail) called data. To convert data into a standard array we give the command:

>> data = data.A pastespecial;

We can use the same procedure for matrices, select all the data in the file I0 example2.txt
and repeat the import procedure. MATLAB can only import blocks of data which meet the
requirements of scalars, vectors or matrices. In the file I0 example3.txt we can see that not
all of the rows contain the same number of values (this could be a common situation when
dealing with experimental data).
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Figure 5.3: The example data in text file IO example3.txt.

MATLAB automatically fills any gaps with NaN which stands for Not a Number.

Figure 5.4: The import wizard fills blank spaces with NaN symbols

5.1.2 The load function

If your data is contained in a simple ASCII text file which does not contain headers etc, then
you can read it straight into MATLAB using the load function, which requires a text string
containing the name of the file to be imported.

>> data=load('IO example1.txt')

data =

-0.4326

-1.6656

0.1253

0.2877

-1.1465
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Unfortunately the load function cannot handle missing data values, so when we try to load
I0 example3.txt which contained gaps in the second column, MATLAB will return an error.

>> data=load('IO example3.txt')

??? Error using ==> load

Number of columns on line 2 of ASCII file F:\GLOMAR MATLAB2009\IO\IO example3.txt

must be the same as previous lines.

We also have a problem with header lines, for example, the file I0 example4.txt contains some
text:

Figure 5.5: An example data file with a text header.

MATLAB cannot combine text and numbers into one array so it returns an error when we
try to load the file:

>> data=load('IO example4.txt')

??? Error using ==> load

Unknown text on line number 1 of ASCII file F:\GLOMAR MATLAB2009\IO\IO example4.txt

"Header".

This means you have to be careful when preparing input files to make sure that they are in a
form which MATLAB can understand. There are extensions to the load function which allow
you to skip header lines. The function textread allows a number of optional input arguments
which allow you to ignore problematic objects like header lines. As a very basic example we’ll
provide textread with a filename, tell it to read 64bit floating point numbers ('%n') and ignore
one header line at the top of the file:

>> data=textread('IO example4.txt','%n','headerlines',1)

data =

-0.4326

-1.6656

0.1253
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0.2877

-1.1465

There are a number of different options for textread which allow you, for example, to de-
fine delimiting characters and replacements for any missing values. Check the MATLAB help
for more details on textread and the more advanced function textscan.

5.1.3 Low-level I/O functions

Often you will have complex data files which cannot be handled with the simple load or
textread functions. For such situations MATLAB has a collection of inbuilt functions which
assist you with the various input / output tasks. The functions are very useful if you are writ-
ing your own code to import specific types of data files. Here we will only look at a very basic
example, but the functions can be combined together and used to make very complex input
routines. In the following example we will open a text file, ignore a header line and read data
into MATLAB line by line.

>> fname='IO example4.txt' %define the file to be opened

>> fid=fopen(fname) %open the file and assign it an identification number

fid =

3

>> fgetl(fid) %read one line from the file (the header)

ans =

Header

>> input=fgetl(fid) %read the next line from the file

input =

-0.4326

>> x(1)=str2num(input) %convert the string into a number and store in x

x =

-0.4326

>> input=fgetl(fid) %read the next line from the file

input =

-1.6656

>> x(2)=str2num(input) %convert the string into a number and store in x

x =
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-0.4326 -1.6656

>> fclose(fid) %close the file

Using these low level I/O functions provides the most flexible method to import and export
data in MATLAB, but you will need some experience to be able to use the efficiently. You can
look on the MathWorks File-exchange for examples of how to use the functions and there are
also a number of freely-available functions which can help with import and export.

5.1.4 Import from an EXCEL workbook

For a number of years MATLAB has included a function xlsread, which (in theory) should
allow you to import data directly from your existing MATLAB workbooks. Here we will look
at a few examples of how the function can be used, but again it is important for you to check
the available help information to find the options which will work best for your data. As a first
step we will work interactively with a worksheet, we’ll call the xlsread function, which will
open the EXCEL workbook and allow us to select the data which should be imported. N.B. if
you’re working with a German version of EXCEL you may hit problems if you are using com-
mas to represent decimal points. In the following example the -1 switch in the call to xlsread

tells MATLAB that we want to select data interactively, before pressing OK and returning to
MATLAB.

>> data=xlsread('IO example5.xls',-1)

Figure 5.6: The xlsread function allows us to interactively select data in EXCEL and send it to
MATLAB with a given variable name.

MATLAB should read then output the information in the variable data:
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data =

-0.4326

-1.6656

0.1253

0.2877

-1.1465

It is also possible to extract data automatically from an EXCEL sheet, this requires the desired
cell position to be entered into the xlsread function. In this example we’ll use the same EXCEL
workbook, extracting data from cells A2 to B6 in the worksheet “Sheet2”.

>> data=xlsread('IO example5.xls','Sheet2','A2:B6 ')

data =

0.1139 0.2944

1.0668 -1.3362

0.0593 0.7143

-0.0956 1.6236

-0.8323 -0.6918

Again, this only demonstrates the most basic functionality of xlsread. When importing your
own data read the documentation carefully.

5.1.5 NetCDF files

For those of you who work with large data sets, for example output from climate models or
satellite observations, you will probably want to load data from NetCDF files into MATLAB.
Importing from NetCDF into MATLAB is not built into MATLAB but a number of different
functions have been written by the scientific community and are available for free download
from various web sites. In my experience the best package is the NetCDF Toolbox which is
available from http://mexcdf.sourceforge.net/. This package will provide you with routines
for reading, modifying and creating NetCDF files.

5.2 Export

Most of the methods for exporting data from MATLAB parallel closely the import routines, so
we won’t dwell on them in too much detail. We’ll look at three basic cases:

• Outputting a simple ASCII file.

• Exporting to an EXCEL workbook.

• Writing formatted text files.

5.2.1 Outputting a simple ASCII file

This can be done using the save function with an extra switch that tells MATLAB to save the
data in ASCII rather than its own binary format. To use save we therefore need to define the
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output filename, the name of the variable to be saved and the output format.
>> y = randn(5,2) %generate some random numbers

y =

0.8580 -0.3999

1.2540 0.6900

-1.5937 0.8156

-1.4410 0.7119

0.5711 1.2902

>> save my output.txt y -ASCII

The output file my output.txt now contains the numbers which were stored in y.

Figure 5.7: Example output ASCII file generated by the save function.

5.2.2 Exporting to an EXCEL workbook

The xlswrite function works in a very similar way to xlsread. We must define the workbook
to which a given variable should be written (if it doesn’t exist it will be created), the worksheet
and range of cells for the output. For this example we’ll make a new EXCEL workbook called
my output.xls and place the data from variable y (created above) in “Sheet3” over the cells
spanning D2 to E6.

>> xlswrite('my output.xls',y,'Sheet3','D2:E6 ')
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Figure 5.8: Example output EXCEL file generated by the xlswrite function.

5.2.3 Writing formatted text files

The inbuilt MATLAB I/O routines can be employed to generate output text files with well
defined structures, including features such as header lines. This generally involves opening a file
using the fopen function and writing lines of data or text one by one with specific formatting
using the function fprintf. When using fopen we need to provide an additional argument 'w',
which tells MATLAB to create a new file if one does not already exist with that name. In order
to control the formatting we must tell MATLAB where to place carriage returns (using the \n
symbol) and define the format of the numbers using field width and precision specifications. In
the following example we’ll output the first column using the format %6.2f (a maximum field
width of 6 characters with 2 after the decimal place) and the second column with %12.8f (a
maximum field width of 12 characters with 8 after the decimal place).

>> fname='my example2.txt'

>> fid=fopen(fname,'w')

>> fprintf(fid,'My random numbers \n')
>> for i=1:5

fprintf(fid, '%6.2f %12.8f \n', y(i,:));

end

>> fprintf(fid,'This is the end \n')
>> fclose(fid)
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Figure 5.9: Example of formatted output using the fprintf function.

5.3 Data Management

MATLAB is particular useful for managing and storing large data sets. Specific values from
specific variables can be recalled quickly with a single statement rather than the tiring mouse
work which is required with spreadsheets. In order to manage our data in a well organized
manner we can use so-called structural arrays which allow data of varying types and sizes to
be stored in fields. The fields form a hierarchy within the structure with each field representing
a property or attributes that we want to associate data with. Using fields we can build up
layers of data in a logical manner. To see how this would work we’ll now look at an example,
building up a structural array to contain the information for the sediment core MD962094. The
information we want to store concerning the core is as follows.

1. Position (latitude, longitude, water depth)

2. The ship name and date the core was recovered

3. Available data (in this case depth and the color reflectance at 400 and 700 nm)

The first thing we need to decide on is a name for the structural array, it would seem sensible
to use the name of the core: MD962094. The first information we’ll input is the waterdepth of
the core (giving both the value 2280.0 and the units “m”), which we will store in a higher level
field called position. Notice how the path through the hierarchy of fields is controlled by the
dot operator.

>> MD962094.position.waterdepth.value=2280.0

>> MD962094.position.waterdepth.units='m'

Note that when inputting the units a text string is used to store characters rather than numbers.
We can now interrogate the variable at different levels again using the dot operator:

>> MD962094

MD962094 =

position: [1x1 struct]

>> MD962094.position
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ans =

waterdepth: [1x1 struct]

>> MD962094.position.waterdepth

ans =

value: 2280

units: 'm'

>> MD962094.position.waterdepth.value

ans =

2280

Entering the remainder of the data follows the same pattern and as before the names that
we use are arbitrary (they could be anything but is is always best to choose something mean-
ingful). First we’ll finish the position information by including the latitude and longitude:

>> MD962094.position.latitude.units='degrees'

>> MD962094.position.latitude.value=-20.0

>> MD962094.position.longitude.units='degrees'

>> MD962094.position.longitude.value=9.265

Next we’ll enter the ship name and the date the core was recovered:

>> MD962094.ship = 'Marion Dufresne'

>> MD962094.date = 'Y1996 M10 D13'

Finally we can enter the colour reflectance data itself (we’ll only enter the first few values
to save space on the page) in each case defining both the values of the data and their units:

>> MD962094.data.reflectance.depth.units='m'

>> MD962094.data.reflectance.depth.value=[0.05;0.1;0.15]

>> MD962094.data.reflectance.nm400.units='%'

>> MD962094.data.reflectance.nm400.value=[19.65;21.44;18.40]

>> MD962094.data.reflectance.nm700.units='%'

>> MD962094.data.reflectance.nm700.value=[35.26;36.35;34.08]

If you are working with date sets from a number of a different cores then you can store their data
in a series of structural variables with a consistent structure, then it is simple to call precisely
the data you want for any given core. Lets imagine that we want to find the maximum value of
the 400 nm reflectance data:

>> max(MD962094.data.reflectance.nm400.value)

ans =

36.3500
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5.4 Exercise: Entering data into a structural array

In this exercise I would like you construct a structural array which contains the details and
values of a real data set. You can choose a data set from your own research or alternatively
look on the PANGAEA database to find a simple data set that you can work with. You can
use the example from the previous section to give you an idea of how to build up the array and
use the I/O methods we discussed above to import the data into MATLAB.
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Chapter 6

Plotting in two-dimensions

6.1 Plotting in two-dimensions

MATLAB can be used to produce a wide variety of plots thanks to its comprehensive graphics
libraries. The appearance of plots can be controlled from the command line, which means that
you can include automatic plotting in your script files and M-functions. Many more specialized
types of graphics which are not included in the distributed version of MATLAB are available
on the File-Exchange.

6.1.1 Figure windows

To create a figure window into which a plot can be placed simply give the command:

>> figure

This will produce a blank window. At this point it is important to realize that the figure
windows has certain properties, called Figure Object Properties, which we may want to change
in order to modify the overall appearance of our final graphic. We can look at these properties
using the get function with the gcf specifier which corresponds to the handle of the current
figure.

>> get(gcf)

The text listed on the screen gives the figure’s properties on the left and their current state
on the right. For example, lets look at the color of the figure, we can either look through the
returned list or request only the color property using the get function:

>> get(gcf,'color') %request only the color property

ans =

0.8000 0.8000 0.8000

The returned values correspond to the RGB value of the current figure color (values can range
between 0 and 1, where [0 0 0] would be black and [1 1 1] would be white). If we want to change
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the color of the figure, for example to red we use the set function and provide the appropriate
color vector (in this case [1 0 0]):

>> set(gca,'color',[1 0 0]) %reset the color property

Now when you look at the figure it should be red (a set of axes may also have appeared).
MATLAB figures and plots are all controlled by adjusting the properties of the handles, just as
in the example we performed.

6.1.2 Using Handles

At first the use of handles can seem like a very complicated way of controlling the appearance
of graphics compared to software such as EXCEL where you just need to double-click to change
items. The advantage of using handles is that we can include adjustments to our figures and
plots in script files, so with a bit of programming the appearance of a graphic can be optimized
automatically. Understanding and using handles takes some time, especially remembering the
specific property names which you may want to adjust. Over time you will remember the
important handle properties and for the more obscure ones the MATLAB help system can tell
you what they do and how they can be adjusted. Throughout the following examples we will
be using handles to modify graphics, so it is important to be familiar with the following simple
specifiers.

• gcf specifies the current figure handle

• gca specifies the current axes handle

• gco specifies the current graphic object handle

6.2 Simple data plotting

Now we’ll generate some simple x,y data and then plot it using the plot function:

>> t = linspace(0,3*pi,30); %30 point equally spaced vector between 0 and 3pi

>> x = sqrt(t).*cos(t); %calculate the x values

>> y = sqrt(t).*sin(t); %calculate the y values

>> figure %create a new figure window

>> plot(x,y) %plot the x,y data
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Figure 6.1: A simple two-dimensional plot of x,y data.

The plot function has a number of additional arguments that allow us to control the style
of the plotted line. For example if we wanted to plot the line in red we would use the additional
option:

>> plot(x,y,'r') %plot the x,y data in red

You should now see that the plot uses a red line. We can also specify plot symbols rather
than a line, for example open circles in green:

>> plot(x,y,'og') %plot the x,y data as green open circles

or small closed symbols in black:

>> plot(x,y,'.k') %plot the x,y data as black points

or diamond symbols (specified using 'd') in magenta with a connecting line:

>> plot(x,y,'dm-') %plot the x,y data as magenta diamonds with a line

or the same as above with a dashed line:

>> plot(x,y,'dm--') %plot the x,y data as magenta diamonds with a dashed line

As mentioned above, you will memorize these various specifiers with time, but they are all
listed in the MATLAB help so it is very easy to find them. If we want to store the handle for
the plotted line we need to provide an output variable for the plot function, we can then view
the handle using get and modify its properties with set.

>> h=plot(x,y,'dm--') %output the handle as h

>> get(h)
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Listed on the screen you’ll see the properties of the plotted data, for example you can see
the LineStyle is '--' just as it was set in the plot command and the Marker is 'diamond'.
As an example of modifying the handle we’ll set the color to red, the symbols to squares, the
size of the symbols to 12 points, the lines to be dot-dashed and to have a thickness of 2 points.

>> set(h,'color',[1 0 0]) %set the color to red

>> set(h,'marker','square') %set the symbols as squares

>> set(h,'markersize',12) %set the symbol size to 12 pts

>> set(h,'linestyle','-.') %set the line to dot-dashed

>> set(h,'linewidth',2) %set the line thickness to 2 pts
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Figure 6.2: A two-dimensional plot of x,y data, the appearance of which has been changed using
its handle.

At anytime we can plot additional data onto the graphic. Now we’ll generate a second data
set and add it to the plot.

>> x1=-y; %create a new x array

>> y1=-x; %create a new y array

>> h1=plot(x1,y1,'g') %plot the data as a green line with the handle h1

When we look at the figure we can see that there is a problem, the old line has been re-
moved from the plot and replaced with the new line. If we want to show both lines on the same
plot we need to use the hold on command, which tells MATLAB to add data to the graphic
rather than replacing it.

>> h0=plot(x,y,'k') %plot the data as a black line with the handle h0

>> hold on %tells MATLAB we want to add to the plot

>> h1=plot(x1,y1,'g') %plot the data as a green line with the handle h1
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Figure 6.3: The two sets of x,y data plotted together using the hold on command.

We also have handles for each plotted data set, h0 and h1, so we could modify either of the
lines using the set command.

6.2.1 Modifying the axes

So far we have used the handles of the plotted lines to change their appearance, but we can
also take a similar approach with the appearance of the axes. There are some simple commands
which allow us to add labels and a title, which must be defined as character strings.

>> xlabel('X data') %add a text string to the x-axis

>> ylabel('Y data') %add a text string to the x-axis

>> title('Two spirals demonstrating the plot command') %add a title
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Figure 6.4: The two sets of x,y data plotted with axis labeling and a title.

We can access the handle for the axes using the gca identifier.
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>> get(gca)

As you can see there are a large number of properties and we can change any of them using the
set command. As with the other handles it is important to check the MATLAB documentation
to find what the allowable states for any given property are. The following sets of commands
show some of the properties that can be changed, enter them one by one each time checking
the figure to see how things have changed.

>> set(gca,'tickdir','out') %tick marks point outwards rather than inwards

>> set(gca,'yminortick','on') %plot intermediate ticks on the y-axis

>> set(gca,'fontsize',16) %set the text size to 16 points

>> set(gca,'xdir','reverse') %reverse the direction of the x-axis

>> set(gca,'ylim',[-2 2]) % set the y-axis range as -2 to 2

>> set(gca,'yaxislocation','right') %place the y-axis on the right hand side

>> set(gca,'xgrid','on') %plot a grid over the x-axis

>> set(gca,'fontangle','italic') %use italic fonts

>> set(gca,'xtick',[-4 -2 0 1 2.5 3.7]) %plot xticks at specific values
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Figure 6.5: The two sets of x,y data plotted with a collection of modifications to the axes.

As you can see you can change every aspect of a graphic using the handles, all you need to
know is the name of the property you want to change.

6.2.2 Multiple sets of axes in a single figure

Often you will want to plot and compare a number data sets within a single figure window, this
can be done using the axes command or its extension subplot. When we create a new figure
window we can place axes in a specific position with a specific size. The axes command has
4 numerical inputs entered as a position vector axes('position', RECT), where RECT = [left,
bottom, width, height] specifies the location and size of the side of the axis box, relative to the
lower-left corner of the Figure window, in normalized units where (0,0) is the lower-left corner
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and (1.0,1.0) is the upper-right. In this first example we’ll make a figure with two sets of axes
and plot our spiral data separately.

>> close all %close the existing figure windows

>> figure %create a new figure window

Now we’ll form a set of axes which have their bottom left corner located at (0.1,0.2) a width of
0.3 and a height of 0.7. We’ll then plot the x,y data inside the axes.

>> axes('position',[0.1 0.2 0.3 0.7]) %create specific axes

>> plot(x,y,'b') %plot x and y in blue

Lets add a second set of axes which have there bottom left corner located at (0.5,0.4) a width
of 0.4 and a height of 0.2. Then we’ll plot the data set x1,y1 inside the axes.

>> axes('position',[0.5 0.4 0.4 0.2]) %create specific axes

>> plot(x1,y1,'r') %plot x1 and y1 in red
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Figure 6.6: User specified axes within a single figure window.

If you would like to create a set of regularly sized and spaced axes then you can use the
subplot command. subplot requires 3 inputs, the number of rows of axes, the number of
columns of axes and which set of axes it should make active. This may sound confusing but
hopefully the example will make things clear, we’ll construct 6 sets of axes in a grid with 2
rows and 3 columns. When we specify the active axes (the third input of subplot) they are
numbered in a sequence which runs from left to right along each row from top to bottom. To
demonstrate this concept we’ll use the axes out of their natural sequence. Remember to keep
looking at the figure to see how it evolves with each command.

>> close all %close the existing figure windows

>> figure %create a new figure window

>> subplot(2,3,1) %2 rows & 3 columns of axes, use position 1
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>> plot(rand(20,1),rand(20,1),'o') %plot some random data

>> title('2 x 3 form, position 1')

>> subplot(2,3,5) %2 rows & 3 columns of axes, use position 5

>> plot(rand(20,1),rand(20,1),'o') %plot some random data

>> title('2 x 3 form, position 5')

As with our previous examples, we can output the handle for a specific set of axes created
by subplot and use it to modify the axes properties.

>> h3=subplot(2,3,3) %2 rows & 3 columns of axes, use position 3, return the handle

>> plot(rand(20,1),rand(20,1),'o') %plot some random data

>> title('2 x 3 form, position 3')

>> set(h3,'color',[1 0 0]) %set these axes to be red
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Figure 6.7: A regular sequence of axes formed using the subplot command.

6.2.3 Different types of plots

So far we have only used the plot command, but MATLAB can make many different types of 2D
plots. All these plotting functions work in a similar way (use help or the online documentation
to understand how each is used), form a basic plot of the data and then customize the graphic
using the handles to modify specific properties. Shown below is a graphic displaying the different
types of plots, there are many more on the File-Exchange and of course you can even write your
own plot functions.
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Figure 6.8: The various 2D plot types available in MATLAB

6.2.4 Contour plots

One specific type of plot that as geoscientists we must pay attention to is the contour plot.
MATLAB has inbuilt functions to plot contour maps, but at a first glance the form of the
input data can appear to be a bit confusing. To contour spatial data we must of course have
two location coordinates, for example latitude and longitude, and some measured parameter
such as sea-surface temperate. Most often we collect these kind of data as a series of [x,y,z]
triplets, forming three columns of data. Unfortunately MATLAB does not follow this system
(not surprisingly we need to use a matrix form for data input), so we have to perform some
preprocessing before we can contour data. As an example of the form in which MATLAB can
plot x,y,z data we’ll use peaks which is a function of two variables, obtained by translating and
scaling Gaussian distributions. We’ll generate and plot the peaks function for 20 x 20 data grids.

>> clear all, close all

>> n=20; %number of grid points

>> [x,y,z]=peaks(n); %evaluate peaks on a 20 x 20 grid

>> size(x) %we can see the size of x

ans =

20 20

>> contour(x,y,z,10) %plot data with 10 contours

>> colorbar %add a colorbar to show the z values
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Figure 6.9: Contour plot of the peaks function evaluated on a 20 x 20 grid.

To understand the form of the matrices MATLAB uses as inputs for its contouring functions
we’ll evaluate the peaks function on a smaller 4 x 4 grid.

>> clear all, close all

>> n=4; %number of grid points

>> [x,y,z]=peaks(n); %evaluate peaks on a 4 x 4 grid

>> x

x =

-3 -1 1 3

-3 -1 1 3

-3 -1 1 3

-3 -1 1 3

>> y

y =

-3 -3 -3 -3

-1 -1 -1 -1

1 1 1 1

3 3 3 3

This shows us how the inputs of the spatial coordinates are organized. The horizontal co-
ordinate, x in this case, has columns of constant value and rows with varying values, while the
vertical coordinate, y, shows the opposite pattern (basically x and y are defining a grid of loca-
tions). Not only do the inputs for the contouring routines need to be in matrix form but they
must be equally spaced in both directions, you can see in the example above that the spacing
is equal to 2 units. So before we can contour our data we must interpolate our collection of
[x,y,z] triplets on to an equally spaced grid of x and y values (this is the same as the gridding
step in SURFER). As an example of how to grid data and plot it we will work with a simple
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topographic data set which is stored in the file dmap.mat with the variables x, y and z.

>> clear all, close all

>> load dmap %load the data file

>> plot(x,y,'or') %plot the positions of the measured data points

>> xlabel('x coordinate') %label the x axis

>> ylabel('y coordinate') %label the y axis
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Figure 6.10: Positions of the data points in the dmap data set

The first thing to note is that our data is in columns not matrices and that the points were
not measured on a regular grid. Now we must create some regular grids onto which we can
interpolate the data. To do this we’ll use the meshgrid function which takes equally spaced
vectors and forms them into grids.

>> xi=[0:0.25:6.5]; %equally spaced row vector of x positions

>> yi=[0:0.25:6.5]; %equally spaced column vector of y positions

>> [xi grid,yi grid]=meshgrid(xi,yi);

>> plot(xi grid,yi grid,'.k') %plot the grid positions

74



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

x coordinate

y 
co

or
di

na
te

Figure 6.11: Positions of the data points in the dmap data set (red circles) with the new positions
forming the regular grids (black dots)

We can now see the positions of the regular spaced grid points and our final task is to interpo-
late our topographic data onto these new grids (we’ll discussed interpolation in detail later in the
course). To perform the interpolation we use the function griddata, giving our measured data
x, y and z and the uniform grids x grid and y grid onto which the data should be interpolated.

>> zi grid=griddata(x,y,z,xi grid,yi grid); %interpolate the z data

>> hold on

>> contour(xi grid,yi grid,zi grid,10) %plot 10 contour lines
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Figure 6.12: Contours determined from the data points in the dmap data set (red circles) after
interpolation onto the new positions in the regular grids (black dots)

There are a variety of different contour-type maps available, for example contourf will pro-
duce a filled contour map and pcolor plots a colored grid. Try the following examples (note
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that MATLAB does not extrapolate the data so some regions of the maps will be empty, again
we’ll talk about this later).

>> figure

>> contourf(xi grid,yi grid,zi grid,10) %plot 10 filled contour intervals

>> figure

>> pcolor(xi grid,yi grid,zi grid) %pseudocolor plot

6.2.5 Saving and exporting figures

MATLAB figures can be saved from the drop-down menu in the specific figure window. This
means you can reload figures and continue working on them at a later time. You can also export
the figures from the drop-down menu into various graphic formats. I’ve always found it useful
to export figures as encapsulated postscript (*.eps), which can then be imported into software
such as CorelDraw and modified (encapsulated postscript produces vector graphics).

6.3 Exercise: Life’s ups and downs in the Logistic Map

In this exercise we’ll combine a number of techniques that we have studied in the course so
far to generate a data set and produce a high quality plot of the final output. If you image a
population within an enclosed environment, for example goldfish in a garden pond, there are a
number of factors which will control how the population grows or shrinks from one generation
to the next. For example:

• Food supply

• Sexual reproduction

• Disease

• Predation

• Competition with other species

• ... and many more

A number of simple theories have been formulated to consider how the population will change
from one generation to the next, but they rely on unrealistic assumptions such as unlimited food
supply and free reproduction. When ecologists studied real animal populations they found a
number of different patterns as a function of time. Using a value of 1 to represent the maximum
possible population and 0 to represent extinction, three basic patterns of “stable”, “periodic”
and “random” behavior were defined.
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Figure 6.13: A “stable” population moves towards a constant equilibrium value. Alternatively,
“periodic” populations oscillate between two or more values. Finally “random” populations
reveal no coherent pattern.

Ecologists believed that two possible mechanisms could have been responsible for the ob-
served patterns. If the population is in equilibrium with the environment then “stable” and
“periodic” patterns could be expected. However if the population is heavily influenced by un-
predictable environmental factors the behavior of “random” populations could be explained.
These two systems are however very different, so which is correct?

In the 1950’s ecologists developed the so-called “logistic equation”, which was designed to
model population behavior, it contains a term to express population growth from one generation
to the next and a second term which restricts the population when it becomes too large.

xnext = r ∗ xinitial ∗ (1− xinitial) (6.1)

where xinitial is this year’s population, xnext is next year’s population and r is the “biotic po-
tential”. The biotic potential influences how much the population changes from one generation
to the next, it will be controlled by factors such as food supply, competition, etc. The term
(1−xinitial) keeps the growth within the defined limits because as x increases, (1−x) decreases.
Some key features of the logistic equation are:

• When x is low the population grows rapidly.

• At intermediate levels of x the population growth is almost zero.

• At high levels of x the population crashes.

Using the logistic equation is is possible to produce “stable”, “periodic” and “random” behavior
simply by changing the constant, r, in the equation, therefore we have one mechanism to describe
all three types of behavior. With increasing computing power, it became possible to study the
dynamics of the Logistic equation. The investigation is very simple.
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1. At random choose a starting population value 0 < x < 1

2. At random choose a value of r in the range 0 < r < 4

3. Calculate the final population after a large number of years (say 2000)

4. Plot a point on a chart at position (r, xfinal)

When this procedure is repeated a large number of times to map the behavior of the logistic
equation we produce the so-called logistic map.

Figure 6.14: The Logistic Map.

Different regions of the map tell us different things about the behavior of a population which
obeys the logistic equation. With r in the range 0 < r <∼ 1 the population will always become
extinct, no matter what the starting size of the population is.

Figure 6.15: The evolution of a population with xinitial = 0.8 and r = 0.9
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With r in the range ∼ 1 < r <∼ 3 the population reaches a steady single value no matter
what the starting value of xinitial is.

Figure 6.16: The evolution of a population with xinitial = 0.02 and r = 2.5

With r in the range ∼ 3 < r <∼ 3.42 the population shifts between two values. This is
called “period two” behavior.

Figure 6.17: The evolution of a population with xinitial = 0.02 and r = 3.25

With r in the range ∼ 3.42 < r <∼ 3.57 the population shifts between four values. This is
called “period four” behavior.
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Figure 6.18: The evolution of a population with xinitial = 0.02 and r = 3.5

With r in the range ∼ 3.57 < r <∼ 4 the population shifts between many values. This is
called “chaotic” behavior.

Figure 6.19: The evolution of a population with xinitial = 0.02 and r = 3.99

Your task is to generate your own version of the logistic map.
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Steps to completing the exercise

This exercise will require a number of different steps.

• Generate code to iterate the logistic equation from a given starting point for a
given number of time steps.

• Simulate a large number of populations with different values of r and xinitial.

• Extract data from your model runs to form a plot of the logistic map.

• Use your plotting skills to make a nice version of the logistic map.

The simplest way to approach this problem is to write a script which will allow you
to generate one time series and then extend the code to run from multiple starting
points. To run for a single value of r and xinitial:

1. Generate a random number between 0 and 1 to provide xinitial.

2. Generate a random number between 0 and 4 to provide r.

3. Use a for loop to iterate the logistic equation 2000 times, updating the popula-
tion after each iteration.

4. Find the final value of the population after 2000 iterations, this will give you one
point (r,xfinal) for the logistic map.

Once you have a method for finding a single point you can then repeat it thousands
of times to find a collection of xfinal values for different values of r and xinitial.

Functions you may find useful

• rand - Uniformly distributed pseudo-random numbers.
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Chapter 7

Plotting in three-dimensions

7.1 Plotting in three-dimensions

Three-dimensional graphics are a natural extension of the two-dimensional graphics we studied
earlier. We can plot data points and lines in three-dimensional space using the function plot3.
It is also possible to plot surfaces and meshes, where the data input must be on regular grids,
which means interpolation of your data may be necessary. As with the two-dimensional graphics
the appearance of the three-dimensional plots is controlled via the graphic handles.

Figure 7.1: The various 3D plot types available in MATLAB
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7.1.1 Plotting points and lines

The function plot3 works in exactly the same way as the two-dimensional plot function we
used earlier. Of course plot3 requires one more input which corresponds to the value of the
third coordinate (defined as z in MATLAB). In the following example we will load data from
a Lorenz system, which consists of time (variable t) and the trajectories x, y, z. First we will
load the data and plot the separate components in two-dimensions.

>> clear all, close all

>> load lorenz

>> subplot(3,1,1)

>> plot(t,x,'r') %plot x as a red line

>> ylabel('x')

>> subplot(3,1,2)

>> plot(t,y,'g') %plot y as a green line

>> ylabel('y')

>> subplot(3,1,3)

>> plot(t,z,'b') %plot z as a blue line

>> ylabel('z')

>> xlabel('t')
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Figure 7.2: Time series for the Lorenz trajectories in x, y and z.

Now We’ll create a new figure and and then plot the trajectories together in three dimensions.

>> figure
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>> plot3(x,y,z) %plot trajectories together in 3D

>> xlabel('x trajectory') %label the x-axis

>> ylabel('y trajectory') %label the y-axis

>> zlabel('z trajectory') %label the z-axis

>> title('Trajectories for the Lorenz system')
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Figure 7.3: Lorenz trajectories in x, y and z.

We’ve now done the basics but we can use the graphics handles to improve the appearance
of the plot. In particular the default orientation of the plot (termed the camera position) does
not provide the best view of the data structure (you can rotate the data manually using the
Rotate3D button). First we’ll add grids to plot box and then modify the property CameraPo-
sition using the axes handle to provide a better view of the data.

>> set(gca,'xgrid','on','ygrid','on','zgrid','on') %plot grids

>> set(gca,'cameraposition',[200 -200 200]); %change the orientation
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Figure 7.4: Lorenz trajectories in x, y and z, plotted with grids and rotated to provide a clear
view of the data. Note the values for the CameraPosition were obtained by gradual modification
until a satisfactory position was found.

7.1.2 Surface plots

Earlier we used two-dimensional contour maps to represent topographic data, but MATLAB
also has the capacity to represent such data in a three-dimensional manner using surfaces and
meshes. As with our contour data the input for such plots must be composed of regular grids,
so we need to preprocess our data using meshgrid and griddata.

>> clear all, close all

>> load dmap %load the data file

>> xi=[0:0.25:6.5]; %equally spaced row vector of x positions

>> yi=[0:0.25:6.5]; %equally spaced column vector of y positions

>> [xi grid,yi grid]=meshgrid(xi,yi);

>> zi grid=griddata(x,y,z,xi grid,yi grid); %interpolate the z data

Now we’ll create a surface plot of the data, add the original data on top, rotate the surface
and make it slightly transparent. Feel free to experiment with the handle of the surface (which
will be called hs) to see what effects you can create.

>> h=surf(xi grid,yi grid,zi grid) %create a surface plot

>> hold on %add to the plot

>> hs = plot3(x,y,z,'ok','markerfacecolor','k') %original data points

>> set(h,'facealpha',0.5) %surface is semitransparent

>> xlabel('x') %label the x-axis

>> ylabel('y') %label the y-axis

>> zlabel('Height') %label the z-axis

>> set(gca,'cameraposition',[-21.5 44.2 2691]) %rotate the plot
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>> colorbar %add a colorbar

Figure 7.5: Topographic data set plotted as a surface.

By default MATLAB uses a sequences of colors, termed a colormap, which runs from blue
through to red. However there are others to choose from and you can even create your own,
for example there is an inbuilt colormap called gray which uses a grayscale, this can be imple-
mented in the current figure using the colormap command.

>> colormap gray

Figure 7.6: Topographic data set plotted as a surface with the gray colormap.
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There are a variety of different ways in which we could have represented the topographic
data in the example, see figure 7.1

7.1.3 Overlaying images

To demonstrate the flexibility of the graphics routines in MATLAB we’ll now look at a more
complicated example, that involves plotting a satellite image of the earth on top of a sphere.
We will read the satellite image (in the form of a jpg) directly from a internet location and store
it as a matrix.

>> clear all, close all

>> filename = 'http://veimages.gsfc.nasa.gov/2430/land ocean ice 2048.jpg';

>> cdata = imread(filename); %read the image from the given location

>> size(cdata) %size of the image data

ans =

1024 2048 3

Note that the size of the image data is 1024 rows (latitude), 2048 columns (longitude) and
3 layers. Each layer provides information on a given color channel, red, green and blue. Now
we will produce a collection of data points which lie on a sphere, which will form the basis of
our Earth:

>> [x, y, z] = sphere(72); %generate data points on a sphere

>> figure %open a new figure window

>> h = surf(x,y,z) %plot a surface from the sphere data

>> axis vis3d %set the axis perspective suitable for 3D
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Figure 7.7: Surface plot of the data points produced by the sphere function. We will replace the
colors of the panels with those from the downloaded satellite image.

As a final step we use the handle of the plotted surface (our sphere) to replace the existing
colors of the panels with the colors obtained from the downloaded jpg (which are now stored in
the variable cdata):

>> set(h, 'facecolor', 'texturemap') %prepare the panels to be colored

>> set(h,'cdata', cdata); %color the panels with the jpg data

>> set(h,'edgecolor', 'none'); %remove lines between panels

>> set(gca,'visible','off'); %hide the axes box

>> set(gcf,'color',[0 0 0]); %set the background color to black

Figure 7.8: Surface plot of the data points produced by the sphere function with the colors of the
panels based on the downloaded satellite image.

You can now use the Rotate3D and Zoom buttons to navigate around your Earth.
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7.2 Exercise: Plotting elevation data

In the file Hawaii.mat you’ll find bathymetric and topographic data for region around the main
Hawaiian Islands. The data represent a scatter of latitude and longitude points with their
respective height data. The aim of this exercise is to produce regular latitude and longitude
grids onto which the height data can be interpolated and then to plot surfaces which represent
the topography and bathymetry.

1. Grid the data at a resolution of 0.1o for both the longitude and the latitude.

2. Plot the gridded data using a suitable 3D plot, add appropriate labels etc.

3. Plot a version of the data that includes the points above sea-level and has a height of zero
everywhere else.

4. Plot a version of the data that includes the points below sea-level and has a height of zero
everywhere else.
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Steps to completing the exercise

This exercise requires a number of steps which follow the previous examples in this
chapter, creating surfaces which represent the bathymetry and topography can be
achieved using relational operators. The basic steps of the exercise are as follows:

• Load the data file Hawaii.mat which contains the variables latitude, longitude
and elevation.

• Create a regular array of latitudes between the minimum and maximum values
in the data set with a spacing of 0.1o.

• Create a regular array of longitudes between the minimum and maximum values
in the data set with a spacing of 0.1o.

• Produce regular grids of latitude and longitude from the prepared arrays.

• Interpolate the height data onto the regular position grids.

• Create a copy of the interpolated data with all the values less than zero replaced
with zeros. This data can be plotted as a surface representing the topography.

• Create a copy of the interpolated data with all the values greater than zero
replaced with zeros. This data can be plotted as a surface representing the
bathymetry.

Functions you may find useful

• min - Smallest elements in array.

• max - Largest elements in array.

• meshgrid - Generate X and Y arrays for 3-D plots.

• griddata - Data gridding.

• find - Find indices of elements which meet relational criteria.

• surf - 3-D shaded surface plot.

• xlabel - Label x-axis.

• ylabel - Label y-axis.

• zlabel - Label z-axis.

90



Chapter 8

Interpolation

Interpolation is a method by which we can use data points to estimate the unknown value of
a function at a given location. This is a common problem in the geosciences, for example, if
we have a collection of calibrated radiocarbon ages through a sediment core, how can we esti-
mate the age of the sediment at any given depth? MATLAB has inbuilt functions to perform
interpolation in any given number of dimensions, they are easy to use but it is important to
appreciate that the various options you can select from can strongly influence your results.

8.1 Interpolation in one dimension

This is the simplest form of interpolation, estimating a value y′ for a given value of x′ based
on a collection of known x, y data points. As an example of the different methods available in
MATLAB we will load an x, y data series and perform different interpolation tasks.

>> clear all %clear MATLAB’s memory

>> close all %close all figures

>> load bedf %load the x,y data

>> plot(x,y,'.r') %plot the data as red points

>> xlabel('x'), ylabel('y') %label the axes
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Figure 8.1: plot of the bedf data set.

Given the measured data we can start to ask questions, such as, what value of y could
we expect at the location x′ = 41. One simple way to answer this question is using “linear”
interpolation, where we determine the equation for a straight line between the two data points
which span x′ = 41. Once we know the equation we can estimate the value of y′.
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Figure 8.2: If we are interested in finding the value of y’ at x = 41, we simply determine
the straight line between the two data points which span the neighborhood of interest (large red
symbols). Once we have the equation; y = 0.21915x−0.26496 we can estimate that when x′ = 41,
y′ = 6.34 (blue circle).
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8.1.1 Piecewise Linear Interpolation

The full name of the approach we have just discussed is “piecewise linear interpolation”, because
the data is split into a series of consecutive pieces and each one is fit with a linear function. The
task can be performed simply in MATLAB using the function interp1, the information we need
to supply is the measured x data (first argument), the measured y data (second argument), the
x′ value for the interpolation (third argument) and the interpolation method to use, which in
this case is 'linear'.

>> y0=interp1(x,y,41,'linear') %using the (x,y) data make a linear estimate of

y at x=41

y0 =

6.3357

It is important to note that when performing interpolation the x-data must be distinct, in
other words you can’t have any repeat points on the x-axis. MATLAB will return an error if
you supply repeat x-values, so in some cases it is necessary to prepare your data before process-
ing. We’ll test this using indexing in order to enter the first values in x and y into the interp1

function twice.

>> y0=interp1(x([1 1:end]),y([1 1:end]),41,'linear')

??? Error using ==> interp1 at 261

The values of X should be distinct.

When performing interpolation with the interp1 function we don’t need to limit ourselves
to determining single values. If we supply the function with a vector of x′ values it will perform
the interpolation for each one. This is very useful for a lot of time series analysis techniques
which assume that you have equally spaced data. If your measured data isn’t equally spaced
then you can simply interpolate it to produce a suitable new data series. Now we’ll work with
the same x, y data as above, but interpolate it onto equally spaced x′-locations in the range
0 ≤ x′ ≤ 200 and with a interval in x′ of 1 unit.

>> figure %produce a new figure

>> plot(x,y,'or','markerfacecolor','r') %plot the original data

>> hold on

>> x0=[0:1:200]'; %generate the equally spaced x array

>> y0=interp1(x,y,x0,'linear'); %interpolate y onto x0

>> plot(x0,y0,'.b-')%plot the linear interpolation

>> xlabel('x'), ylabel('y') %label the axes
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Figure 8.3: Linear interpolation of unequally spaced x,y data onto a new equally spaced x vector.

When we examine the interpolated values we discover that for locations at the start and end
of the interpolated data MATLAB has returned NaN (Not a Number), rather than a real number.

>> [x0(1:3),y0(1:3)] %list the first 3 values of the interpolated data

ans =

0 NaN

1.0000 6.2677

2.0000 6.1500

>> x(1:3) %the first value of the x input data

ans =

0.9268

3.0807

8.6048

We can now see that the interpolation at x′ = 0 is not possible because it is outside the
range of our input data. We can attempt to overcome this problem using extrapolation, which
makes the assumption that the properties at the edges of the x,y data continue unmodified
outside the measured range. Applying extrapolation to interp1 is simple, but as we will see
later the results have to be treated with extreme caution.

>> y0=interp1(x,y,x0,'linear','extrap'); %add a 5th option to perform extrapolation

>> [x0(1:3),y0(1:3)] %we now have predicted y-values outside of the measured x-range
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ans =

0 6.3854

1.0000 6.2677

2.0000 6.1500

So far we have only looked at linear interpolation, which assumes that the gaps between data
points can be connected by straight lines. There are however a number of different approaches
built into interp1 that we can use for interpolation and they all give different results! It is
important to realize at this stage there is no single correct method with which to approach
interpolation, each method does different things depending on how it is designed. All the meth-
ods are “wrong” in so far as (unless we are very lucky) they will not predict y′ correctly, but
they are wrong in different ways depending on their methodology. The best we can do is try
to choose the method of interpolation which is most suitable for the type of data set we are
working with.

8.1.2 Nearest Neighbor Interpolation

The nearest neighbor method is probably the simplest approach to interpolation. If we are
interested in the value of y′ at a location x′ we simply search for the measured data point which
has the x-value closest to our point of interest and assign y′ to the same value as this data point.
We will work again with the bedf data from the previous example.

>> y0=interp1(x,y,x0,'nearest'); %interpolate y onto x0 using the nn approach

>> figure %produce a new figure

>> plot(x,y,'or','markerfacecolor','r') %plot the original data

>> xlabel('x'), ylabel('y') %label the axes

>> hold on

>> plot(x0,y0,'.g-') %plot the nearest-neighbor interpolation

>> title('Nearest neighbor interpolation')
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Figure 8.4: Interpolation of unequally spaced x,y data (red symbols) onto a new equally spaced
x’ vector using the nearest neighbor approach (shown in green).

8.1.3 Cubic spline Interpolation

The cubic spline method is an attractive approach to interpolation because it allows the lines
connecting the measured data points to be curved. It also has advantages concerning its deriva-
tives, which we will look at quickly.
Linear interpolation preserves continuity of the fitted function f(x), i.e. there are no breaks
in the curve, each data point is connected by two straight lines to its neighbors. For a data
point at a given location in x, the straight lines which connect the point to it’s neighbors have
the same value of y when evaluated at x. The same cannot be said for the derivatives of the
two straight lines which may have different values at x and therefore are not continuous. This
leads to sudden jumps in the curve and the interpolation is not smooth. In contrast a cubic
spline fits a series of cubic functions between neighboring data points which are constrained to
have continuous first and second derivatives. Again, for a given data point with location x this
means that the cubic functions which link it to its left and right neighbors must have identical
values of their first and second derivatives at x. This constraint makes the fitted functions very
smooth. The mathematics of how to fit a cubic spline is very elegant and amazingly efficient,
if you are interested in a more detailed explanation of cubic splines look at chapter 3 of Moler
(Numerical Computing with MATLAB).

>> y0=interp1(x,y,x0,'spline'); %interpolate y onto x0 using a cubic spline

>> figure %produce a new figure

>> plot(x,y,'or','markerfacecolor','r') %plot the original data

>> xlabel('x'), ylabel('y') %label the axes

>> hold on

>> plot(x0,y0,'.k-') %plot the cubic spline interpolation

>> title('cubic spline interpolation')
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Figure 8.5: Interpolation of unequally spaced x,y data (red symbols) onto a new equally spaced x
vector using a cubic spline (shown in black).

As we can see in Figure 8.5 the cubic spline can produce local extremes in the interpolation
which cannot always be justified by the measured data, for example look at the peak at x = 180.
Cubic splines are said to “overshoot” data when they form a spurious peak and “undershoot”
when they form a spurious trough.

8.1.4 PCHIP Interpolation

The Piecewise cubic Hermite method (pchip) provides a balance between the linear approach
(which produces no curvature) and the cubic spline (which can produce artifical extremes). The
pchip approach is a so-called “shape-preserving” spline method which exams the derivatives of
neighboring cubic functions to determine if together they will form a peak or a trough (this will
be the case if their derivatives have different signs). Where peaks or troughs will appear special
precautions are taken to make sure that an overshoot or undershoot does not occur. Again,
you can look at chapter 3 of Moler (Numerical Computing with MATLAB) for more details
concerning the pchip algorithm.

>> y0=interp1(x,y,x0,'pchip'); %interpolate y onto x0 using pchip

>> figure %produce a new figure

>> plot(x,y,'or','markerfacecolor','r') %plot the original data

>> xlabel('x'), ylabel('y') %label the axes

>> hold on

>> plot(x0,y0,'.b-') %plot the pchip interpolation

>> title('Piecewise cubic Hermite interpolation')
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Figure 8.6: Interpolation of unequally spaced x,y data (red symbols) onto a new equally spaced x
vector using the pchip method (shown in blue).

As you can see each interpolation method produces a different result. As discussed above it
is important not to think of right and wrong in this situation. Each method is right in so far as
it produces a function according to its defined constraints, but they are also all wrong because
they will never form perfect predictions of y′ except under very special circumstances (i.e. when
the function the used in the interpolation matches exactly to the form of the function that the
data follows).

8.2 The dangers of extrapolation

We now going to generate a simple time series which follows a sine function. We will then con-
tinue the time series using extrapolation based on the different techniques we discussed above.
This will hopefully convince you that extrapolation should be performed with extreme caution.

>> x=[0:1:96] % selection of x data sites

>> y=sin(2.*pi.*x./25) %sine function with a period of 25 units

>> plot(x,y,'.r-') %plot the data

>> set(gca,'xlim',[0 106]) %extend the graphic window

>> x0=[96:1:110]'; %x locations for extrapolation

>> y0=interp1(x,y,x0,'linear','extrap'); %linear extrapolation

>> hold on

>> plot(x0,y0,'b') %add linear extrapolation to the figure

>> y0=interp1(x,y,x0,'nn','extrap'); %nn extrapolation

>> plot(x0,y0,'g') %add nn extrapolation to the figure

>> y0=interp1(x,y,x0,'spline','extrap'); %cubic spline extrapolation

>> plot(x0,y0,'k') %add spline extrapolation to the figure

>> y0=interp1(x,y,x0,'pchip','extrap'); %pchip extrapolation

>> plot(x0,y0,'m') %add pchip extrapolation to the figure
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>> legend('data','linear','nn','spline','pchip',0) %add a legend
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Figure 8.7: Extrapolation of the sine function data (red symbols) with the different methods
available in interp1. Note that the various methods give dramatically different results and none
of them are close to approximating the continuing sine function.

The dangers of extrapolation we put into a geoscience context 125 years ago by Mark Twain
in his memoir Life on the Mississippi (1884):

“In the space of one hundred and seventy six years the Lower Mississippi has shortened it-
self two hundred and forty-two miles. That is an average of a trifle over a mile and a third per
year. Therefore, any calm person, who is not blind or idiotic, can see that in the Old Olitic
Silurian Period, just a million years ago next November, the Lower Mississippi was upwards
of one million three hundred thousand miles long, and stuck out over the Gulf of Mexico like a
fishing-pole. And by the same token any person can see that seven hundred and forty-two years
from now the Lower Mississippi will be only a mile and three-quarters long, and Cairo [Illinois]
and New Orleans will have joined their streets together and be plodding comfortably along under
a single mayor and a mutual board of aldermen. There is something fascinating about science.
One gets such wholesale returns of conjecture out of such a trifling investment of fact.”

8.3 Interpolation in two dimensions

The ideas of interpolation in one-dimension can be extended into higher dimensions. MATLAB
has a number of inbuilt functions for interpolation in two or more dimensions, but the one most
suitable for most purposes is griddata which fits a grided surface to a collection of data points
(basically the same task as performed in the software package GRAPHER). As before there are
a number of different methods to perform the interpolations, simple ones such as “linear” and
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“nearest neighbor” and more complex ones, such as “cubic” and “v4” which allow the surface
to be curved between the data points. To demonstrate the use of griddata we are going to
load some topographic measurements, plot them as points in three-dimensions and fit different
surfaces to them. Our data has to be interpolated on to regular grids, this can be done using
the meshgrid function.

>> load topo %data containing the variables x, y, z

>> figure %create a new figure window

>> plot3(x,y,z,'ok','markerfacecolor','k') %plot the data as black points

>> xlabel('x'), ylabel('y'), zlabel('z') %label the axes
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Figure 8.8: Topographic raw data plotted as a collection of points. If you would like to explore
the structure of the data you can use the “Rotate3D” button in the figure window.

Now we must create the regular grids onto which the data will be interpolated. This is done
by defining vectors in the x and y directions and bringing them together using the function
meshgrid.

>> x0=[420:0.25:470]; %define x-locations for grid (201 points)

>> y0=[70:0.25:120]; %define y-locations for grid (201 points)

>> [XI,YI]=meshgrid(x0,y0); %generate x,y grids (201 x 201 points)

Once the grids are prepared the interpolation can be performed and the results plotted. The
first three inputs for griddata are the x, y, z coordinates of the raw data, the next to inputs
are the XI and YI grids onto which the data will be interpolated, and the final input is a string
defining the interpolation method. First we’ll use linear interpolation:

>> ZI=griddata(x,y,z,XI,YI,'linear'); %perform the linear interpolation

>> hold on
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>> surf(XI,YI,ZI) %plot the interpolated surface

>> shading interp, light %smooth the surface appearance and illuminate

Figure 8.9: Topographic raw data plotted as a collection of points with a colored surface fitted
by linear interpolation. Note that all the faces joining the points are flat because the linear
interpolation does not allow curvature.

Now we’ll replot the data and perform the interpolation using the “v4” method.

>> figure %create a new figure window

>> plot3(x,y,z,'ok','markerfacecolor','k') %plot the data as black points

>> xlabel('x'), ylabel('y'), zlabel('z') %label the axes

>> ZI=griddata(x,y,z,XI,YI,'v4'); %perform the v4 interpolation

>> hold on

>> surf(XI,YI,ZI) %plot the interpolated surface

>> shading interp, light %smooth the surface appearance and illuminate
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Figure 8.10: Topographic raw data plotted as a collection of points with a colored surface fitted
by “v4” interpolation.

The “v4” method allows curvature and is smoother than the linear approach. As we dis-
cussed with interpolation in one-dimension, both techniques are wrong in that they cannot
predict the values of z exactly, so we always have to think carefully about the interpolation
method and what it actually represents.

8.4 Interpolation in higher dimensions

MATLAB can perform interpolation in higher dimensions (three upwards) using the function
ndgrid to generate uniformly spaced data grids onto which interpn can interpolate data.
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Chapter 9

Optimization

9.1 Minimization in one dimension

We are interested in finding the minimum value of the function:

f(x) =
−1

(x− 0.3)2 + 0.01
− 1

(x− 0.9)2 + 0.04
− 6 (9.1)

If possible the best first step is to look how the function behaves over a range of different x
values. To do this we must first write a MATLAB function to perform the calculation. This is
simply:

function y=myfunction(x)

%Calculation of equation 9.1

y=-1./((x-0.3).∧2+0.01)-1./((x-0.9).∧2+0.04)-6;

Now we can calculate the value of equ. 9.1 for a series of x values.

>> x = linspace(-1,2,100); %100 equally spaced values between -1 and 2

>> y = myfunction(x); %call the function using the values in x

>> plot(x,y) %plot the result

>> xlabel('x') %add the x-axis label

>> ylabel('y') %add the y-axis label

Visual inspection shows us the the minimum is around x ∼ 0.3. But we can use MATLAB
to make a better evaluation, using the technique of minimization. The function fminsearch

will numerically find the minimum value of a provided function from a predefined starting point
(in other words our first guess for the value of x ). The call to fminsearch is simple, you provide
the name of the function you wish to minimize, the variable to use, and your starting point. In
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Figure 9.1: Evaluation of equ. 9.1 in the range [-1,2].

this case we will minimize myfunction with a starting value of x = 0.5

>> x0 = fminsearch(@(x) myfunction(x), 0.5)

x0 =

0.3004

The returned value tell us that within a predefined tolerance equ. 9.1 reaches its minimum
value at x = 0.3004. We can add this information to the plot:

>> hold on

>> plot(0.5,myfunction(0.5),'or') % add a red maker at the starting point

>> plot(x0,myfunction(x0),'ob') % add a blue maker at the minimum

In order to minimize equ. 9.1 we wrote a separate function, however, if your expression is
relatively simple you can also use an inline function:

>> f = inline('-1./((x-0.3).∧2+0.01)-1./((x-0.9).∧2+0.04)-6')

>> x0 = fminsearch(@(x) f(x), 0.5)

x0 =

0.3004
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Figure 9.2: Minimization of equ. 9.1, from the starting point x = 0.5. The starting point is
shown as a red circle, the finishing point as a blue circle.

9.1.1 How does it work?

There are a wide variety of different methods with which to perform minimization, each of
which is suitable for different kinds or problems. One of the most commonly employed (and the
simplest to understand) techniques is the so-called “gradient descent” method. To understand
the ideas behind gradient descent we will use a zoom-up of our myfunction example. We can
think of the shape of our function defined in equ. 9.1 as a hilly topography, if we placed a ball
at position, x = 0.5, the ball would roll down the hill until is stops in the deepest part of the
valley, which of course represents the minimum we are looking for.
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Figure 9.3: From its starting point at x = 0.5, the ball rolls down the hill until it stops in the
deepest part of the valley, which is our minimum at x = 0.3004

The fminsearch function performs this task iteratively from the provided starting point, if
increasing x produces a decrease in y, then a small positive change is made to the estimate of
x. Alternatively, if decreasing x results in decreasing y then a small negative change is made to
our estimate of x. In this way the algorithm follows the value of the function downhill, hence
the name “gradient descent”. This approach is simple but it does have its limitations, lets look
at what happens if we try to find the minimum of the function from a starting point of x = 1.3.

>> x0 = fminsearch(@(x) myfunction(x), 1.3)

x0 =

0.8927

We have obtained a different result! However if we look at the shape of the function
it is not difficult to see why this is the case. The gradient descent method will always move
“downhill” so from our starting point at x = 1.3 it heads towards the small valley at x = 0.8927,
but then gets stuck. Once at the bottom of this valley y is increasing when x is either increased
or decreased, so the algorithm would effectively have to travel “uphill” in order to reach the
minimum at x = 0.3004, which is not allowed.
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Figure 9.4: Minimization of equ. 9.1, from the starting point x = 1.3. The starting point is
shown as a red circle, the finishing point as a blue circle.

Here we must introduce the concept of global vs. local minima.

• global minimum: the point at which the function achieves its least value.

• local minimum: a point in the function, f, where f(x) ≤ f(y) for all points y in a
neighborhood of x.

With this in mind your initial guess becomes very important because it will control wether you
obtain the global or the local minimum. The function we used in equ 9.1 is very simple, we
can plot it and see that a local minimum exists, this may not be possible for more complicated
functions. For the kind of problems we are working with we must always be aware that the al-
gorithm might be returning a local rather than global minimum. One simple way to investigate
for the presence of local minima in your function is to run it lots of times with different starting
values and see if different answers are returned.
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Figure 9.5: The function defined by equ. 9.1 has both a global and a local minimum. If we use
the gradient descent method an initial guess to the right of the red line will return only the local
minimum, whilst starting from the left of the line will return the global minimum.

Some algorithms have been proposed which are claimed to always find the global minimum
of a function, but they only work for a very specific set of problems. An example of a more
complex algorithm in MATLAB is the function fminbnd, which (in theory) will return the lo-
cation of the deepest minimum of a function within a given range of x. So for example we
would use fminbnd to find the location of the deepest minimum of equ. 9.1 within the range
−1 ≤ x ≤ 2. Notice that we don’t supply the function with an initial guess, only the bounds
of the neighborhood of x that it should investigate (in this case the last 2 inputs of the function).

>> x0 = fminbnd(@(x) myfunction(x),-1,2)

x0 =

0.3004

The algorithm correctly identifies that the minimum at x = 0.3004, is deeper than the one
at x = 0.8927, however there is still no guarantee that this is the true global minimum, which
could lie outside the range −1 ≤ x ≤ 2. (In my person experience fminbnd does not always
return the minimum within a given range, so be careful when using it).

Another interesting question is to consider finding the maxima of the function rather than
the minima. In fact this is very simple to deal with, we would multiply equ. 9.1 by -1 to turn
the maxima into minima and then proceed with the minimization procedure as before.

9.2 Minimization in higher dimensions

The gradient descent algorithm can be applied to higher dimension problems and still performs
in the same way, following the function downhill until it reaches a minimum. Let’s look at a
more complicated two-dimensional function, which calculates a value z based on inputs x and
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y.

z = f(x, y) =3(1− x)2 exp(−x2 − (y + 1)2)

− 1
(x

5
− x3 − y5

)
exp(−x2 − y2)

− 1

3
exp(−(x+ 1)2 − y2)

(9.2)

This is probably a bit too complicated to write as a single inline function, so again we will write
a separate m-function file, but we have to take into account the manner in which fminsearch

works. The fminsearch function only allows one variable to be changed during the minimiza-
tion, therefore we must input x and y together as a single variable. The easiest way to do this
is to combine x and y for the call to the function, but then split them once they are inside the
function. Therefore we’ll use one input variable xy, the first column of which is the x data and
the second column of which is the y data.

function z=myfunction2(xy)

%function to calculate equ. 9.2

%to make things easier we’ll split the calculation into 3 parts

x=xy(:,1); y=xy(:,2) split the data into its x and y components

A=3.*(1-x).∧2.*exp(-x.∧2-(y+1).∧2);

B=-10.*(x./5-x.∧3-y.∧5).*exp(-x.∧2-y.∧2);

C=-1./3.*exp(-(x+1).∧2-y.∧2);

z = A + B + C;

First we should look at the shape of the function, to act as an input we need matrices rep-
resenting x,y. To do this we can use the meshgrid function that we used previously:

>> [x,y]=meshgrid(-3:0.1:3,-3:0.1:3); %generate the (x,y) data

>> z = myfunction2([x(:),y(:)]); % combine x and y, and determine the value

>> surfc(x,y,z) %plot as a surface with contour lines

>> colormap gray %use the grayscale color map

>> xlabel('x') %add a label to the x-axis

>> ylabel('y') %add a label to the y-axis

>> zlabel('z') %add a label to the z-axis
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Figure 9.6: The two-dimensional function defined by equ. 9.2. Use the Rotate3D option to
examine the topography, you should see that there are three minima; two local and one global.

We can locate the minima in equ. 9.2 using fminsearch in the same manner as we did for
the one-dimensional case. The only difference is that because we are now working with x and y
coordinates we need to supply a first guess for each one (entered into function as a single array).
Lets start with an initial guess of (1.1,-0.6):

>> hold on

>> xy0 = fminsearch(@(xy) myfunction2(xy),[1.1,-0.6])

>> plot3(1.1,-0.6,myfunction2([1.1 -0.6]),'or') %plot the starting point

>> plot3(xy0(1),xy0(2),myfunction2(xy0),'ob') %plot the finishing point
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Figure 9.7: Minimization of equ. 9.2, using fminsearch from a starting point of (1.1,-0.6). The
starting point is shown as a red circle, the finishing point as a green circle.

As with the one-dimensional case, fminsearch will work downhill towards a minimum, which
may not necessarily be the global minimum.
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The one and two-dimensional cases that we have examined so far have been very simply where
you could minimize the function quite accurately by eye. Now we will look at more complicated
situations where the power of optimization will hopefully become evident.

9.3 Constrained Optimization

In many cases it is desirable to force our minimization problem to fit certain constraints. For
example, we may fit a curve to data and know from theory that it should be constrained to have
a certain form. Lets start with a curve fitting problem of this form, imagine we are studying a
data set with the which follows the cubic relationship:

f(x) = c1x
3 + c2x

2 + c3x+ c4 (9.3)

Now we’ll simulate some experimental data that follows this relationship. To do this we will
calculate the values of the function for different values of x and add some random numbers to
the results to simulate experimental noise.

>> coef = [1 -2 1 -1]; %coefficients of the cubic curve

>> x = linspace(-2,4,100); %an array of 100 x values between -2 and 4

>> y = coef(1).*x.∧3 + coef(2).*x.∧2 + coef(3).*x + coef(4); %calculate the curve

>> y = y + randn(size(y)); % add random numbers to the curve to act as noise

>> plot(x,y,'.b') %plot the synthetic data as blue points
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Figure 9.8: Simulated experimental data following the relationship given in equ. 9.3. Your data
may not look exactly the same because the random numbers used to represent the noise will be
different.
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We can use minimize the “sum of squared residuals” to find the best fit to the data. In this
case we will fit a cubic polynomial to the data, but of course we won’t get a perfect fit because
we have added a noise component. First we need to calculate the value of the line for a given
set of coefficients (which we will store in the vector, c) and then determine the difference to the
data, i.e. determine the residuals.

function ssr = objfun(c,xdata,ydata)

%objective function to calculate residuals on a cubic fit

%calculate the line given the coefficients in c

yhat=c(1).*xdata.∧3 + c(2).*xdata.∧2 + c(3).*xdata + c(4);

%calculate the sum of the squared residuals by comparing to ydata

ssr = sum((ydata-yhat).∧2);

The optimal fit to the data is found when we minimize the sum of the squared residuals.
We can do this using fminsearch, with a starting guess of c of all zeros. When we have the
optimized version of c we can calculate and plot the best fit line for our different values of x.

>> c = fminsearch(@(c) objfun(c,x,y),[0 0 0 0]) %minimize the residuals

>> y0 = c(1).*x.∧3 + c(2).*x.∧2 + c(3).*x + c(4); %the fitted cubic curve

>> hold on

>> plot(x,y0,'r','linewidth',1) %plot the fitted curve as a red line
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Figure 9.9: Optimized cubic fit (red line) to the experimental data (blue dots).

The fit seems to be okay, but imagine the situation where theory tells us the fitted curve has
to obey certain constraints. The function fminsearch can only perform unconstrained mini-
mization, so instead we must use the function fmincon, which has addition inputs which allow
you to add problem constraints. The inputs are quite complex, but they allow us to define
linear inequalities, linear equalities and bounds; they are as follows:
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c = fmincon(function,c0,A,b,Aeq,beq,lb,ub)

minimize f(c) such that:


A · c ≤ b

Aeq · c = beq

lb ≤ c ≤ ub

(9.4)

So what does all of this mean? The constraints allow us to find a solution to the minimization
problem which meet certain requirements. Lets look at the statements one by one, in all cases
the final solution of the minimization is represented by c:

• A · c ≤ b, we can define a set of values in A that when matrix multiplied by c must be less
than or equal to the defined value b.

• Aeq · c ≤ beq, we can define a set of values in A that when matrix multiplied by c must
be equal to the defined value b.

• lb ≤ c ≤ ub, all the values in c must be greater than or equal to the lower bound, lb, and
less than or equal to the upper bound, ub.

9.3.1 Linear Equalities

We’ll start by enforcing a constraint that the curve must pass through the point (-2,-19). To
do this we must use the linear equalities option, which can be written in the form:

A = [−23,−22,−2, 1]

A · c = −19

In MATLAB notation we can set the constraints and call the function in the following way:

>> xc = -2 %define the constrained x value

>> yc = -19 %define the constrained y value

>> Aeq=xc.∧[3,2,1,0]; %left-hand side of the constraint

>> beq=yc; %right-hand side of the constraint

>> c=fmincon(@(c) objfun(c,x,y),[0 0 0 0],[],[],Aeq,beq,[],[]); %call fmincon

>> y0 = c(1).*x.∧3 + c(2).*x.∧2 + c(3).*x + c(4); %the fitted cubic curve

>> plot(x,y0,'k','linewidth',1) %plot the fitted curve as a black line
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Figure 9.10: Optimized cubic fit (black line) to the experimental data (blue dots) constrained to
pass through the point (-2,-19).

We can look at the returned coefficients in c, and check that Aeq · c does in fact equal beq.

>> c'%display the coefficients as a column

ans =

1.0281

-2.0414

0.8203

-0.9689

>> Aeq*c'%check the equality constraint

ans =

-19

To add more equality constraints is simple, we just need to combine them into a matrix with
one for each constraint. We have our first constraint that the fitted line must pass through the
point (-2,-19), now lets add another constraint to also force the line through (0,-1):

>> Aeq(1,:)=(-2).∧[3,2,1,0]; %left-hand side of the 1st constraint

>> beq(1,1)=-19; %right-hand side of the 1st constraint

>> Aeq(2,:)=0.∧[3,2,1,0]; %left-hand side of the 2nd constraint

>> beq(2,1)=-1; %right-hand side of the 2nd constraint

>> c=fmincon(@(c) objfun(c,x,y),[0 0 0 0],[],[],Aeq,beq,[],[]); %call fmincon

>> y2 = c(1).*x.∧3 + c(2).*x.∧2 + c(3).*x + c(4); %the fitted cubic curve

>> plot(x,y2,'g','linewidth',1) %plot the fitted curve as a green line

>> Aeq*c'%check the inequality constraint

ans =
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Figure 9.11: Optimized cubic fit (green line) to the experimental data (blue dots) constrained to
pass through the points (-2,-19) and (0,-1).

9.3.2 Linear inequalities

Now lets try a linear inequality, forcing the fitted curve to have a gradient greater than or equal
to 5 when x = 2. First we need an expression for the gradient of the cubic polynomial, a bit of
simple calculus gives us:

f ′(x) = 3c1x
2 + 2c2x+ c3 (9.5)

We can now write the constrain on the gradient based on equ. 9.5:

>> x1=2

>> y1=5

>> A=[3.*x1.∧2, 2.*x1, 1, 0]

>> b=y1

Before we call the function it is important to note that our constraint demands that the gradient
is greater than or equal to a given value, whilst the function uses linear inequalities of the form
less than or equal to. We can get around this problem very simply by using −A and −b as the
constraints, also keeping our previous linear equality the function call looks like:

>> c=fmincon(@(c) objfun(c,x,y),[0 0 0 0],-A,-b,Aeq,beq,[],[]);

We can check that the inequality constraint is met and then plot the resulting line:
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>> A*c'%check the inequality constraint

ans =

5

>> y1 = c(1).*x.∧3 + c(2).*x.∧2 + c(3).*x + c(4); %the fitted cubic curve

>> plot(x,y1,'b','linewidth',1) %plot the fitted curve as a blue line
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Figure 9.12: Optimized cubic fit (blue line) to the experimental data (blue dots) constrained to
pass through the points (-2,-19) and (0,-1) and to have a gradient greater than or equal to 5 at
x = 2.

9.4 Exercise: The Geiger counter

Often a Geiger counter will be used to measure the radioactivity of rocks. One problem with
simple Geiger counters is that at high activity (high count rates) they will underestimate the
true activity. This is because after a γ-ray enters the detector the system is “dead” for a short
period of time during which it cannot measure. If another γ-ray enters the system during this
dead-time it will not be counted and thus the observed count rate will be less than the true
count rate. This situation is made worse because not only are the γ-rays which enter during
the dead-time not counted, they do extend the dead-time.
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Figure 9.13: How can we find the true count rate of a Geiger counter which suffers from dead-
time.

The relationship between the observed count rate (Nobs) and the true count rate (Ntrue) is
an exponential law equation:

Nobs = Ntruee
−Ntrueτ

where τ is the dead-time per pulse (20 x 10−6 seconds in old instruments). Note this is a tran-
scendental equation which means that it cannot be rewritten in the form Ntrue = .... In this
exercise you will use fminsearch to determine the value of Ntrue when Nobs = 8000 cps and τ
= 20 x 10−6 s.

Steps to completing the exercise

Don’t forget that we have examined this problem before when we discussed writing
functions. In the previous case we found our best estimate by finding the value of
Ntrue which produced the minimum squared difference of the count rate equation with
the observed count rate.

• Find an expression which you can minimize to find the best estimate of Ntrue.

• Write this expression as an inline function.

• Minimize the function using fminsearch and an initial guess of Ntrue.

Functions you may find useful

• exp - Exponential.

• inline - Construct INLINE object.

• fminsearch - Multidimensional unconstrained nonlinear minimization.
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Chapter 10

Image Analysis

Image analysis is a complex field which provides a number of methods with which to process
image data. Most images are nothing more than matrices of pixels, therefore they can be
processed extremely efficiently in MATLAB. An “Image Processing Toolbox” is available from
The MathWorks which contains a large number of M-functions that provide state of the art
analysis methods (which tend to be pretty mathematically intensive). Such a toolbox is however
unnecessary for simple processing and many of the basic tasks in image processing are nothing
more that simple matrix manipulations. Here we are going to look at some simple examples
which consider processes such as cropping, rotation and color equalization, if you would like
more information then you can look at the Image Processing Toolbox or books such as Digital
Image Processing Using MATLAB by Gonzalez and Eddins.

Before we get started with the examples it is important to consider briefly what form image
data takes (ultimately this will define how we have to process it). We will be working with raster
graphics which are nothing more that a collection of colored pixels on a regular grid. Each pixel
is given a defined color which is stored numerically as a combination of different parameters,
for example a defined mixture of red, green and blue. Considering the example of a red, green
and blue mixture, the so-called RGB color model, for any given pixel we need to provide a
representation of the intensity of the red, green and blue components of its colour. This means
for each pixel we will need to define three numbers, one for each of the color “channels” and
there are a number of ways we can do this:

• From 0 to 1, with any fractional value in between. This representation is used in theoretical
analyses, and in systems that use floating-point representations.

• Each color component value can also be written as a percentage, from 0% to 100%.

• In computing, the component values are often stored as integer numbers in the range 0 to
255, the range that a single 8-bit byte can offer (by encoding 256 distinct values).

• High-end digital image equipment can deal with the integer range 0 to 65,535 for each
primary color, by employing 16-bit words instead of 8-bit bytes.

In most cases MATLAB employs the 0 to 255 system to define RGB triplets, which allows the
information to be stored more efficiently as unsigned 8-bit integers rather than double preci-
sion numbers which require 64-bits (this means for some operations we will have to convert the
data to double precision before we can proceed). A few examples of colors in the RGB model are:
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• [255,0,0] → red

• [0,255,0] → green

• [0,0,255] → blue

• [255,255,255] → white

• [0,0,0] → black

• [127,255,212] → aquamarine

Later when we start loading images into MATLAB we will see how the information on the
different colour channels is stored. The other important colour model for us to consider is
“grayscale” which only carries intensity information, representing a mixture of black and white.
As with the RGB model, grayscale normally ranges between 0 (black) and 1 or 255 (white),
therefore for each pixel we only need to store one unsigned 8-bit integer.

10.1 MATLAB and images

A number of M-functions are available in the standard release of MATLAB with which to read,
display and save images. In this first example we will recover information about an image, then
load it and look how it is structured before finally displaying it. Over the following examples
there will be a number of repeated commands, so it would be a good idea to produce a script
function from which you can easily recall certain tasks. We will clear the memory and close all
existing figures before using the function imfinfo to obtain information on the properties of
the image file thin section1.jpg.

>> clear all, close all

>> info=imfinfo('thin section1.jpg')

info =

Filename: 'C:\Documents and Settings\thin section1.jpg'

FileModDate: '08-Oct-2009 16:45:58'

FileSize: 413876

Format: 'jpg'

FormatVersion: ''

Width: 640

Height: 449

BitDepth: 24

ColorType: 'truecolor'

FormatSignature: ''
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NumberOfSamples: 3

CodingMethod: 'Huffman'

CodingProcess: 'Sequential'

Comment: {}

As you can see this provides us with detailed information concerning the properties of the
image. We can load the image into the memory using the imread function and we will store the
numeric data representing the pixel colors in an array called I. We will then look at the size

of I to understand how the data is organized:

>> I = imread('thin section1.jpg');

>> size(I)

ans =

449 640 3

The size information reveals that we have a three-dimensional matrix, in the third dimension
we have 3 layers of data. You can think of this structure as a collection of 3 two-dimensional
matrices which are 449 by 640 lying on top of each other. The different layers represent the
different color channels in the sequence; red (first layer), green (second layer) and blue (third
layer). So if we wanted to look at the RGB values for the first pixel in the image (top lefthand
corner) we can simply call it by its index:

>> I(1,1,:)

ans(:,:,1) =

2

ans(:,:,2) =

2

ans(:,:,3) =

12

which means it has an RGB triplet of [2,2,12]. Finally, we are going to display the im-
age using the function imagesc, once this is plotted we need to adjust the aspect ratio of the
image to ensure the pixels are square (by default MATLAB plots with an xy aspect ratio cor-
respond to the golden section so in the case of images we need to adjust this ratio). As a last
step we will remove the plot axes which are included in the figure by default:

>> imagesc(I) %diplay image

>> set(gca,'dataaspectratio',[1 1 1]) %equal xy scaling

>> set(gca,'visible','off') %remove axes
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Figure 10.1: The RGB image stored in the file thin section1.jpg.

10.2 Intensity information and Colormaps

One important operation is to be able to convert an image from the RGB color model in the
gray scale color model. This is actually surprisingly easy, all it requires is for us to convert
the RGB triplets into intensity information using a bit of book-keeping (making sure all the
information is stored in the right places) and a matrix multiplication with some predefined
transfer coefficients. We’ll plot the final result and then also look at how we can change the
appearance using MATLAB’s various colormaps. To start with we’ll clear the memory and
reload the original image.
>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

We’re now going to separate the three-dimensional matrix into a collection of three two-
dimensional matrices, one for each color channel. This means extracting each layer and using
the squeeze function to reduce it from a 3D 449 by 640 by 1 matrix to a 2D 449 by 640 matrix
(as you might of guessed the squeeze function removes singleton dimensions).

>> R=squeeze(I(:,:,1)); %obtain a 2D copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain a 2D copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain a 2D copy of blue channel information

We’ll now recombine the color information in the form of 3 vectors; red, green and blue which
each contains 287360 entries (i.e. the product of 449 and 640) and convert the numbers to
double precision.

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

In order to derive the intensity values we now perform a matrix multiplication between the
matrix RGB and some predefined coefficients and then check that no values lie outside the
allowable 0 to 255 range. Once this done we simply need to reorganize the pixels into their
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original positions thus restoring the structure of the image.

>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficients

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

We now have a two-dimensional matrix which has the same size and shape as the original
image and contains individual intensity values for each of the pixels. We can plot this intensity
information using the imagesc function and then change its appearance using various colormaps
(a grayscale color model is the most traditional for this kind of data).

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

>> colormap cool(256) %change colormap to "cool" with 256 levels

>> colormap summer(256) %change colormap to "summer" with 256 levels

Finally, if we can output the image using the function imwrite which has additional argu-
ments to control the type of image, level of compression etc (see the help entry of imwrite for
more information).

>> imwrite(GS,summer(256),'test.jpg','quality',90) %output image as jpg

Figure 10.2: The intensity image displayed with a variety of different colormaps
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10.3 Cropping an image

Cropping images is a simple task of identifying the outmost pixels of the region of interest and
producing a copy of the image data up to these boundaries. In the following example we study
how to crop an intensity image and then extend the idea to RGB images. We’ll also define the
limits of the region of interest by interacting with the image directly using the ginput function.
Notice the must of the first part of this exercise is a repeat of previous exercises (loading the
image, converting it to intensity values etc), but it is still included for completeness.
>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficiants

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

At this stage we have loaded the image, converted it to magnitude data and displayed the
results. Next we’ll use the ginput function to display the select the region on interest. When
used in the form ginput(n) the function will bring the active image to the front and using a set
of cross-hairs allow use to define n positions with a click of the mouse. The x and y positions of
these locations will be stored in the output variables. In this case we need to define two posi-
tions which are the opposite corners of the region of interest. Because we will employ the x and
y values as addresses they must be rounded to the nearest integer (using the round function)
and then we will make a copy of the intensity data between these limits. Notice the use of the
min and max functions when defining the addresses, this is necessary because we don’t know in
which order the user selected the corner points.

>> [xlim,ylim]=ginput(2) %interact with image to define 2 corner points

>> xlim=round(xlim); %round x to nearest integer (i.e. to nearest pixel)

>> ylim=round(ylim); %round y to nearest integer (i.e. to nearest pixel)

>> GSc=GS(min(ylim):max(ylim),min(xlim):max(xlim)); %select rows and columns
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The cropped version of GS now resides in the variable GSc, which can be plotted

in the same manner as other intensity images:

>> figure %create new figure window

>> imagesc(GSc) %diplay cropped image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

Figure 10.3: Cropped intensity image displayed with a grayscale colormap

10.4 Cropping a colour image

The ideas behind cropping colour images are exactly the same as intensity images. The key
difference is that now we are working with a three rather than two dimensional matrix and we
must crop each of the red, green and blue layers appropriately. The first part of this is example
follows the ideas introduced above, load the image, display it and select the crop points using
the ginput function.

>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> imagesc(I) %display image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> [xlim,ylim]=ginput(2) %interact with image to define 2 crop points

>> xlim=round(xlim); %round x to nearest integer (i.e. to nearest pixel)

>> ylim=round(ylim); %round y to nearest integer (i.e. to nearest pixel)

We can now use the limits in xlim and ylim to act as addresses to crop the image across
all three layers.
%now select rows and columns of the ROI and all 3 color layers

>> Ic=I(min(ylim):max(ylim),min(xlim):max(xlim),:);
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>> figure %create new figure window

>> imagesc(Ic) %diplay cropped RGB image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

If we want to output this image using imwrite there are two important differences to the
intensity example we looked at earlier. The first is the data must be converted from double
precision into unsigned 8-bit integers, this can be achieved with the command:

>> Ic=uint8(Ic);

Secondly when we give the imwrite command we do not need to define a colormap because we
are providing a collection of RGB values (i.e. the colors are defined by the data itself).

>> imwrite(Ic,'test.jpg','quality',90)

Figure 10.4: Cropped RGB image

10.5 Resizing and Aspect ratios

In this example we will work with an intensity image, but exactly the same procedure could
be applied to an RGB image by processing the individual red, green and blue layers separate
two-dimensional matrices and then recombining them into a three-dimensional matrix. To begin
with we will load the image and convert it into intensity data (using the same commands as
above):

>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision
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>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficiants

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

To consider the problems of resizing and adjusting aspect ratios it is important to think about
how the image data is organized. We have a series of square pixels positioned on a regu-
larly spaced grid, which in this specific case has 449 rows and 640 columns. We can generate
appropriately spatial grids representing the positions using the meshgrid function and assum-
ing the upper-left pixel has a position of [0,0] and the lower-right pixel has a position of [1,1].

% make x and y grids to represent pixel positions

>> [x,y]=meshgrid(linspace(0,1,size(GS,2)),linspace(0,1,size(GS,1)));

The next step is to define factors in the by which to contract or expand the figure in both
the x and y directions (where values greater than 1 represent expansion and those less than 1
represent contraction).

>> xf=2.0 %reduce resolution in x axis by 50%

>> yf=0.5 %increase resolution in x axis by 275%

Now we’ll make two new spatial grids (xn and yn) which again range between [0,0] and
[1,1] but have the increments between points in the x and y directions adjusted by the prede-
fined factors. This means were we want to expand the image we will include more points and
alternatively where we want to contract the image we will include less points. Once these grids
are produced we simply need to interpolate the image data from the original x and y grids onto
the new xn and yn grids.

%change resolution in x and y directions by given factors

>> [xn,yn]=meshgrid(linspace(0,1,size(GS,2).*xf),linspace(0,1,size(GS,1).*yf));

>> GSs=griddata(x,y,GS,xn,yn); %interpolate image on to new grid points

Because the spatial information of the image is inherent to the structure of the data (as men-
tioned above, pixels are square and assumed to be equally spaced in the x and y directions)
we have now expanded and compressed the image by adding and removing pixels, respectively.
The last step is to display the rescaled image.

>> figure %create new figure window
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>> imagesc(GSs) %diplay cropped image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

Figure 10.5: Intensity image expanded to 200% in the x direction and shrunk to 50% in the y
direction

10.6 Image Rotation

Rotating an image follows the same ideas as the previous example, we manipulate the original
positions of the pixels and then interpolate onto a regular grid. In this example we will look at
an RGB image, so the 3 layers will need to be treated separately. The first task is to load the
image and display it.

>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> imagesc(I) %diplay image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

Next we will define the angle (in radians) we would like to rotate the image through and
use this to define a two-dimensional rotation matrix of the form:[
cos θ − sin θ
sin θ cos θ

]
In code this looks like:

>> phi=45./180.*pi; %choose rotation angle and convert to radians

>> T=[cos(phi) -sin(phi); sin(phi) cos(phi)]; %2D rotation matrix

To perform the rotation we need to define a set of pseudo x,y positions for the pixels. An
important point to consider here is that the rotation matrix we have constructed will rotate
about the point (0, 0), therefore if we want to rotate the image about its center our grids of
positions must range between an upper-left position of [-0.5,-0.5] and a lower-right position
of [0.5,0.5].

>> [r,c,l]=size(I) %image size (rows, columns, layers)
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%generate pseudo x,y positions for each of the pixels

>> [x,y]=meshgrid(linspace(-0.5,0.5,c),linspace(-0.5,0.5,r));

Now we can form the x and y pixel positions into column vectors and combine them into a
matrix. To rotate the positions we simply perform a matrix multiplication with the rotation
matrix.

>> xy=[x(:),y(:)]; %set positions as vectors and combine into a matrix

>> xyT=xy*T; %(matrix) multiply position and rotation matrix

>> xT=xyT(:,1) %rotated x positions

>> yT=xyT(:,2) %rotated y positions

We now have a rotated position associated with each of the pixels in the original image, this
means that we can take the values for the red, green and blue layers and interpolate them from
the rotated coordinates back onto regular coordinate grids which span the range of the rotated
coordinates, thus completing the rotation.
>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

>> [x,y]=meshgrid(linspace(min(xT),max(xT),c),linspace(min(yT),max(yT),r));

>> Rr=griddata(xT,yT,RGB(:,1),x,y); %interpolate red on regular grid

>> Gr=griddata(xT,yT,RGB(:,2),x,y); %interpolate green on regular grid

>> Br=griddata(xT,yT,RGB(:,3),x,y); %interpolate blue on regular grid

We now need to need to reorganize the data into a three-dimensional matrix and the con-
vert it into unsigned 8-bit integers:

%create a copy of I into which the rotated data will be placed

>> Ir=double(I);

>> Ir(:,:,1)=Rr;

>> Ir(:,:,2)=Gr;

>> Ir(:,:,3)=Br;

>> Ir=uint8(Ir) %convert data into unsigned 8bit integers

Finally we can display the image, note the now empty black areas where no image informa-
tion exists.

>> figure %create new figure window

>> imagesc(Ir) %diplay image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes
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Figure 10.6: RGB image rotated by 45o

10.7 Histogram Equalization

Histogram equalization provides a method with which to adjust (enhance) the contrast of an
image. This is achieved by flattening and stretching the distribution of pixel intensities across
the range 0 to 255. In the following example we will load our standard image, convert it to
intensities and produce a histogram of the resulting values.

>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficiants

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels
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At this stage we would like to produce a histogram of the intensity values. This can be achieved
using the hist function to count the number of pixels falling into defined bins and the bar

function to plot the result.
>> N = histc(GS(:),[0:255]); %find number of pixels in each intensity band

>> figure, bar([0:255],N,'histc') %plot histogram

>> xlabel('Intensity [0-255]') %add a x-label

>> ylabel('Number of Pixels') %add a y-label

>> set(gca,'tickdir','out') %make ticks face outwards
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Figure 10.7: Histogram of pixel intensities

We can see that the distribution of intensities is strongly skewed towards darker values,
in this case we may be able to improve the image contrast by flattening the distribution to
give a more uniform spread of intensities. As a first step we will find the empirical cumulative
probability distribution of the number of pixels in each of the intensities bands. This is sim-
ple given that we have already determined N which is the number of pixels in each intensity band.

>> Nc=cumsum(N)./sum(N); %cumulative sum of number of pixels from 0 to 255

We now have enough information to be able to transform (via interpolation) from intensi-
ties values into cumulative probabilities which will lie within the range 0 and 1. We can then
normalize distribution to have extremes of 0 and 1 and multiply by 255 to the values span the
full range of possible intensities.

>> Jc=interp1([0:255],Nc,GS); %interpolate pixel intensity onto the cdf

>> Jc=Jc-min(Jc(:)); %normalize lowest value to zero

>> Jc=Jc./max(Jc(:)); %normalize largest value to 1

>> Jc=round(Jc*255); %set data in full range [0-255]
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The values stored in Jc represent our equalized image. We can look at the histogram of equal-
ized intensities and then display the image.

>> N = histc(Jc(:),[0:255]); %find number of pixels in each intensity band

>> figure, bar([0:255],N,'histc') %plot histogram

>> xlabel('Intensity [0-255]') %add a x-label

>> ylabel('Number of Pixels') %add a y-label

>> set(gca,'tickdir','out') %make ticks face outwards
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Figure 10.8: Histogram of equalized image intensities

>> figure, imagesc(Jc) %diplay adjusted image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

Figure 10.9: Test image before and after histogram equalization
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10.8 Blurring

It might seem a strange idea but some image processing methods work better if an image is
slightly out of focus, a technique known as blurring. We’ll return to this idea later, but for
the time being we will look at a basic method with which we can blur images called Gaussian
Blurring. The idea is simple enough, we construct a two-dimensional Gaussian function and
convolve it with the image in order that the intensity of pixels are replaced with a weighted
average of the their own intensity of the intensity of their neighbors (within a specific spatial
extent). This is analogous to forming a weighted moving average of the pixel intensities in both
the vertical and horizontal directions. In a similar manner to the moving average, the wider the
Gaussian function we construct the more smoothing (blurring) will occur. As with our previous
exercises we’ll start by loading the image data and convert the RGB pixels into intensities.
>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficiants

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

Now we’ll construct the Gaussian function with which to perform the smoothing. First the
width (standard deviation) of the function should be defined, this controls the extent of the
blurring because a wider function will average over a larger area of the image for any given
pixel. To make things simpler we’ll always set the width (assigned as sigma) to a positive
integer. We’ll then evaluate the Gaussian function on a regular grid which spans -3*sigma to
3*sigma in both the x and y directions. Once the function is constructed we can visualize it as
a surface.

>> sigma=2 %standard deviation of the normal distribution

>> [xf,yf]=meshgrid(-3*sigma:3*sigma,-3*sigma:3*sigma); %xy grid for filter

>> g=exp(-(xf.^2+yf.^2)./(2*sigma.^2)); %normal distribution
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>> g=g./sum(g(:)); %normalized so the sum of the filter is 1

>> surf(xf,yf,g) %visualize function as a surface

>> xlabel('x') %label the x-axis

>> ylabel('y') %label the x-axis

>> set(gca,'xlim',[-3*sigma 3*sigma],'ylim',[-3*sigma 3*sigma])
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Figure 10.10: Two-dimensional Gaussian function with a standard deviation of 2.

To convolve the function and the intensity data is simple using the inbuilt function conv2

(which performs 2D convolution). We will also use the additional 'valid' which truncates the
final image to remove any edge effects where the function did not sit completely on the image.
We can the plot the blurred intensity data in the standard manner.

>> GSf=conv2(GS,g,'valid'); %convolve image and filter, remove edge effects

>> figure %create new figure window

>> imagesc(GSf) %diplay image

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels
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Figure 10.11: Image after Gaussian blurring by a function with a standard deviation of 2.

10.9 Edge Detection

As the name suggests the method of edge detection helps us identify possible features in images
by isolating regions where the intensity changes rapidly (i.e. where there could be an edge).
There are a number of advanced techniques for edge detection (for example canny edge detec-
tion) and it is an ongoing field of research. The method we will employ is very simple, detecting
sharp changes in intensity by taking the derivative of the image in both the x and y directions.
Where we find regions with gradients of a large magnitude it is possible that we have detected
an edge. As before we will load out image and transform it into intensity data.
>> clear all, close all

>> I = imread('thin section1.jpg'); %load image as 3D RGB array

>> R=squeeze(I(:,:,1)); %obtain copy of red channel information

>> G=squeeze(I(:,:,2)); %obtain copy of green channel information

>> B=squeeze(I(:,:,3)); %obtain copy of blue channel information

>> RGB=[R(:),G(:),B(:)]; %form RGB into a 3 column matrix

>> RGB=double(RGB); %convert to double precision

>> coef=[0.2989; 0.5870; 0.1140] %RGB to intensity transform

>> GS=RGB*coef; %(matrix) multiply RGB and transform coefficiants

>> GS(GS<0)=0; %round up values below 0

>> GS(GS>255)=255; %round down values above 255

>> [r,c]=size(I(:,:,1)) %rows and columns of original image

>> GS=reshape(GS,[r c]); %change from a vector to a matrix

>> imagesc(GS) %diplay intensities with default jet colormap

>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

As mentioned above to detect possible edges we need to take the gradient of the intensity
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image in both the x and y directions. MATLAB has a function gradient that will perform
the task for us, returning two outputs Lx and Ly, which are the gradients in the x and y di-
rections, respectively. The magnitude of the gradient is then simply obtained from

√
Lx2 + Ly2.

>> [Lx,Ly] = gradient(GS) %estimate first-order derivatives in both x and y

>> d=sqrt(Lx.^2+Ly.^2) %gradient magnitudes

Of course we have a wide distribution of gradients and we need to choose a threshold to define
which values could correspond to real edges. We will perform the this task manual but a number
of more advanced techniques can perform it automatically. To make our choice of a cutoff value,
we will plot the cumulative probability of the gradient magnitudes.

>> cdfplot(d(:)) %plot cumulative distribution of gradient magnitudes
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Figure 10.12: Cumulative distribution of the gradient magnitudes.

Based on this we will say that only points with a gradient magnitude of 30 or greater will
be considered as edges. Therefore we can take our gradient data and set all the values less than
30 to 0 and all those greater than 30 to 255.

>> cutoff=30% define cutoff value

>> dc=d; %copy of gradients to which the cutoff will be applied

>> dc(dc<cutoff)=0; %values below cutoff are reduced to zero

>> dc(dc>=cutoff)=255; %values above cutoff are set to maximum

We can now visual the edge data as a black and white image.

>> figure %create new figure window

>> imagesc(dc) %display image based on gradients
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>> set(gca,'dataaspectratio',[1 1 1]) %set equal x y scaling

>> set(gca,'visible','off') %remove axes

>> colormap gray(256) %change colormap to "gray" with 256 levels

Figure 10.13: Edges (white) defined by a cutoff gradient magnitude of 30.

10.10 Exercise: Improved edge detection

In the previous exercise we performed edge detection on a unprocessed image and got a relatively
messy result without clearly defined edges. There are a number of preprocessing steps that can
help improve the performance of our simple edge detection algorithm. The first is to perform
histogram equalization and the second is to blur the image. The idea behind preprocessing
with blurring is that small scale features which don’t represent true edges will be smoothed out
whilst major features (hopefully true edges) will remain. The task of this exercise is to see how
preprocessing can improve edge detection in either our example image or an image of your own.
You will need to complete the following tasks:

1. Load your image.

2. Convert the image into intensity values.

3. Perform histogram equalization.

4. Perform Gaussian blurring.

5. Perform simple edge detection.

136



Steps to completing the exercise

This exercise requires a number of steps which follow the previous examples in this
chapter. As long as you are careful with variable names you can recycle many of the
commands from the earlier examples almost directly. One key idea is to investigate how
blurring and modifying the gradient magnitude cutoff can improve the performance
of the edge detection algorithm. Therefore you will need to think about:

• The standard deviation of the two-dimensional Gaussian function.

• Trying different cutoff values to find the “optimal” edge detection.
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Chapter 11

Final Project

11.1 Sand, Silt and Clay in an Arctic Lake

As a final project we are going to plot and analyze some grain size composition data from a
lake in the Arctic. This will require you to undertake all stages of the analysis process from
importing your data to plotting your final results. There are a number of steps involved and
don’t be surprised if this takes some time.

11.1.1 Importing the data

The lake grain size data is stored in the EXCEL file lakegrainsize.xls, import the data into
MATLAB in a form that you can work with it.

11.1.2 Plotting the data

Plot the grain size data in a ternary plot (look on the MathWorks File-exchange to find functions
which will produce ternary plots, or if your feeling confident write your own function). Your
final graphic could look something like the following figure.
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Figure 11.1: A ternary plot of the Arctic lake grain size data, color-coded according to sample
depth.

11.1.3 Define a regression relationship

Now you must analyze the data to find if there is a relationship between grain size composition
and depth. This is not quite as simple as it sounds because we are dealing with closed data,
where the composition of each sample must add to 100%. Since we are studying MATLAB
rather than statistics, I will guide you through the steps you will need to take to plot the final
regression relationship, but it is up to you to write the code.
The statistics we will use follow the ideas of John Aitchison, who developed methods with which
to analyze closed data, if you are working with closed data in your own projects it would be a
good idea to read his book.

J. Aitchison (2003). The Statistical Analysis of Compositional Data. The Blackburn Press,
pp416.

To determine the regression we need to find the linear relationships between:

• The natural log of the ratio sand
clay

versus the natural log of lake depth

• The natural log of the ratio silt
clay

versus the natural log of lake depth

You can determined the straight-line relationships (i.e. a gradient and an intercept) using the
function polyfit. For any lake depth you should now be able to predict the log ratios of sand
/ clay and silt / clay using your regression relationship (look at the function polyval).

To convert from log ratios back into sand, silt and clay compositions you can use the equa-
tions:
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11.1.4 Plot the regression relationship

Plot the regression line predicting grain size composition for a series of depths through the lake.
Your final result should look something like the graphic below.

Figure 11.2: A ternary plot of the Arctic lake grain size data color-coded according to sample
depth. The black line shows the regression relationship, the dashes indicate where extrapolation
was necessary.
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Steps to completing the exercise

As a review of the material above the basic steps to complete the exercise are as follows:

• Import the data from Lakegrainsize.xls and give the variables appropriate names.

• Plot the data in a ternary plot.

• Find the straight-line relationships between the log of depth and the log-ratios
of the grain sizes.

• Create an array of depth values.

• Find the log-ratios of the grain sizes for the new log depths according to the
straight-line relationships.

• Convert the log-ratio grain sizes back into sand, silt and clay proportions.

• Add the sand, silt and clay proportions from the regression into the ternary plot.

Functions you may find useful

• xlsread - Read Microsoft Excel spreadsheet file.

• ternplot - Plot ternary phase diagram (available from The Mathworks file-
exchange).

• ternlabel - label ternary phase diagram (available from The Mathworks file-
exchange).

• log - Natural logarithm.

• exp - Exponential.

• polyfit - Polynomial curve fitting.

• polyval - Polynomial evaluation.

11.2 Exercise: Bringing it all together with cars and

goats

If you still have some time left over you can try this final exercise, it is fun but challenging,
some of you might be familiar with the problem because it is quite famous. Again you should
think about how to work a solution to the problem before thinking about how specifically to
perform the task in MATLAB. This problem is known as the “Monty Hall” problem and was
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brought to fame when discussed by the world’s “most intelligent” person Marilyn vos Savant
(she has a quoted IQ of 228). The statement of the problem is as follows:

Suppose you’re on a game show, and you’re given the choice of three doors: Behind one door is
a car; behind the others, goats. You pick a door, say A, and the host, who knows what’s behind
the doors, opens another door, say C, which has a goat. He then says to you, “Do you want to
pick door B?” Is it to your advantage to switch your choice?

Figure 11.3: In search of a new car, the player picks a door, say A. The game host then opens
one of the other doors, say C, to reveal a goat and offers to let the player pick door B instead
of door A.

.

At first glance it appears the problem comes down to a 50:50 choice and therefore from
a probability point of view there is no advantage or disadvantage to switching your choice or
sticking with your original choice. However, if you work through the probabilites properly you
find that the chances of winning a car are twice as high if you switch compared to sticking with
you original choice. This does indeed seem to be a counterintuitive result so we’ll attempt to
write a MATLAB script which simulates the game. The game can then be run 1 million times
(you need a for loop to do this) with the various possibilities being played out (you can use
relational and logical operators to do this). Does you numerical model get close the result from
probability theory? If you are new to programming and MATLAB you may find this exercise
very challenging, so don’t feel too depressed if you can’t complete it.
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Steps to completing the exercise

This exercise can be solved with a few inbuilt functions (the list below might give you
some clues on how to proceed). To solve the problem take the following steps

• Think.

• Think some more.

• Find the solution.

Functions you may find useful

• rand - Uniformly distributed pseudo-random numbers.

• sort - Sort in ascending or descending order.
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Chapter 12

Exercise Solutions

It is important to realize that the exercises in this course can be solved in a variety of different
ways, therefore the solutions I will give are by no means the “definitive answer”. I’ve have
attempted to provide solutions which are written in a clear manner in order to help you under-
stand what is happening, this means that the code may be somewhat inefficient and from the
point of view of computation speed can certainly be improved.

12.1 Solution: Mmmm, π

There are three main tasks to solve this exercise:

1. Generating the numbers between 0 and 10000 to act as n.

2. Calculating the terms of the series using the values of n.

3. Finally, summing the series and multiplying by 4 to estimate π.

These three tasks can be performed using simple one-line commands. First we need to generate
a variable n which contains the integers between 0 and 10000:

>> n = [0:1:10000];

Now we must calculate each term of the series according to expression:

(−1)n

2n+ 1

We’ll perform this calculation and place the result in a variable called terms (note, my variable
names are completely arbitrary, you can use any names you want as long as they follow the
rules we discussed earlier).

>> terms = (-1).^n./(2*n+1);

You’ll notice that the order of evaluation is important here and it is necessary to place brackets
around the -1. Finally, we simply need to add all the terms together using the inbuilt sum

function and multiply by 4 to make our estimate of π.
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>> p = sum(terms)*4

Putting this all together our script for estimating π using the method of Madhava of Sangam-
agrama would look like:

n = [0:1:10000];

terms = (-1).^n./(2*n+1);

p = sum(terms)*4

12.1.1 Golf Solution: Mmmm, π

If you remember, MATLAB Golf involves coding a problem in as few characters as possible.
The following lines present one solution in a compact form which takes advantage of a number
of MATLAB’s shortcuts. It uses 30 characters:

>> n=0:1e4

>> sum((-1).^n./(2*n+1))*4

12.2 Solution: Mmmm, a second helping of π

To convert our script file into M-function we need to perform three tasks:

1. Add a header line defining the function name (madhava), the input (N) and output (p).

2. Define the values of n to be used as ranging between 0 and N

3. Add suitable help and comments

Our original script file looked like:

n = [0:1:10000];

terms = (-1).^n./(2*n+1);

p = sum(terms)*4

In order to convert this into a M-function we just add an appropriate header line and give
N as the maximum value of n.

function p = madhava(N)

n = [0:1:N];

terms = (-1).^n./(2*n+1);

p = sum(terms)*4;
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Once the function is saved (make sure the filename is the same as the defined function name)
you can call it from the MATLAB command window with a defined value of N.

>> p = madhava(10000)

p =

3.1417

We should also add help and comments to explain the purpose of the function and the steps it
makes in the calculation.

function p = madhava(N)

%madhava - Estimate pi using the Madhava-Leibniz series

%

% Syntax: p = madhava(N)

%

% Inputs:

% N - the maximum term to be included

%

% Outputs:

% p - estimate of pi

%

% Other m-files required: none

% Subfunctions: none

% MAT-files required: none

%

% Author: Dave Heslop

% Department of Geosciences, University of Bremen

% email address: dheslop@uni-bremen.de

% Last revision: 6-Dec-2008

%------------- BEGIN CODE --------------

n = [0:1:N]; %form the integer terms

terms = (-1).^n./(2*n+1); %calculate series terms

p = sum(terms)*4; %sum all terms (to give pi/4) and multiply

%------------- END CODE --------------

12.3 Solution: The Geiger counter

This exercise is more complicated than the previous ones. We will solve it in a simple way by
testing a number of possible values of Ntrue then selecting the one which gives a value closest
to our desired Nobs. We’ll start by developing the code in a script file with fixed values of
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Nobs = 8000 cps and τ = 20 x 10−6 s. The first thing to do is define these values in suitably
named variables:

>> Nobs=8000;

>> tau=20e-6;

Now we’ll create an array of Ntrue values to test, in this case ranging between 1 and 100000:

>> Ntest=[1:1e5];

To calculate the observed count rate which would be produced by each of the values in Ntest

we place them in our equation:

>> Ncalc=Ntest.*exp(-Ntest.*tau);

We now have an array (Ncalc) which contains the predicted observed count rate for each of the
guessed values in Ntest. To find which produces a prediction which is closest to Nobs we take
the root squared difference between Ncalc and Nobs:

>> Ndiff=sqrt((Ncalc-Nobs).^2);

The position within Ndiff that has the smallest value tells us the location in Ntest which
provides the best prediction for Nobs. To find this index position we can use the inbuilt func-
tion sort, this takes an array and reorders it from lowest to highest value and gives a second
output with the original index positions of the values before they were sorted.

>> [Ndiff min,idx]=sort(Ndiff);

We now know that our best guess for Ntrue lies in Ntest at the index given in the first po-
sition of idx:

>> Ntrue=Ntest(idx(1))

Ntrue =

9716

So, for an observed count rate of 8000 cps and τ = 20 x 10−6 s, we can estimate that Ntrue

= 9716 cps. We now have the basic workings of our code and we need to convert it into an
M-function. This means we need to think about input and output values. The required inputs
will be:

• The observed count rate (called Nobs)

• The dead-time (called tau)

• The array of values to test (called Ntest)
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We only need a single output, the predicted value of Ntrue, which will be called Ntrue. All this
information, including the desired function name, can then be included in a header line followed
by the commands we developed above.

function Ntrue = geiger(Nobs,tau,Ntest)

Ncalc=Ntest.*exp(-Ntest.*tau);

Ndiff=sqrt((Ncalc-Nobs).^2);

[Ndiff min,idx]=sort(Ndiff);

Ntrue=Ntest(idx(1));

The M-function can be tested with the same problems as we used before, that way we can check
that nothing has gone wrong:

>> Nobs=8000;

>> tau=20e-6;

>> Ntest=[1:1e5];

>> Ntrue = geiger(Nobs,tau,Ntest)

Ntrue =

9716

Finally we should add help lines and comments to explain how the function works.

function Ntrue = geiger(Nobs,tau,Ntest)

%geiger - Predict the count rate of a Geiger counter

%

% Syntax: Ntrue = geiger(Nobs,tau,Ntest)

%

% Inputs:

% Nobs - Observed count rate [cps]

% tau - dead-time [s]

% Ntest - range of count rates to test [cps]

%

% Outputs:

% Ntrue - Predicted true count rate [cps]

%

% Other m-files required: none

% Subfunctions: none

% MAT-files required: none

%

% Author: Dave Heslop

% Department of Geosciences, University of Bremen

% email address: dheslop@uni-bremen.de

% Last revision: 6-Dec-2008
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%------------- BEGIN CODE --------------

Ncalc=Ntest.*exp(-Ntest.*tau); %predicted cps

Ndiff=sqrt((Ncalc-Nobs).^2); %rs difference with observed

[Ndiff min,idx]=sort(Ndiff); %locate smallest difference

Ntrue=Ntest(idx(1)); %select best fitting value

%------------- END CODE --------------

12.4 Solution: Classifying sediments

In this exercise you were asked to analyze grain size data from the file grainsize.mat in order to
find how many samples contained certain amounts of sand, silt and clay. Specifically:

1. How many samples contain more than 50% sand?

2. How many samples contain more than 50% silt?

3. How many samples contain more than 30% silt or more than 25% clay?

4. How many samples contain more than 40% sand, less than 40% silt and more than 40%
clay?

The first task is to load the data into MATLAB (plus we will clear the memory before starting:

clear all

load grainsize

The variable gs is now in the memory which contains the data for the sand (first column),
silt (second column) and clay (third column) percentages. Each row of the gs matrix represents
a different sample. We now need to use a combination of relational and logical operators to
answer the questions. Lets start with “How many samples contain more than 50% sand?”. The
first thing we need to consider is that the information on sand content is contained in the first
column of gs, therefore to access the sand content for all the samples we will use the address
gs(:,1). We can now find the number of samples with more than 50% sand in two different
ways, in the first we will return an array of logical values (1s signify samples which meet the
criteria and 0s signify those that don’t) and simply add together all the entries:

>> output=gs(:,1)>50
>> sum(output)

ans =

19

Alternatively, we can use the find function to provide an array containing the indices of the
samples which met the criteria and then simply find how many entries are in the array using
the function numel:
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>> idx=find(gs(:,1)>50)
>> numel(idx)

ans =

19

For the remaining questions we will determine an array of logical values and sum the entries
together in a single line. Notice how the addressing of the gs matrix changes in order to select
the sand, silt and clay components as required and the inclusion of logical operators are com-
binations of criteria have to be tested.

“How many samples contain more than 50% silt?”

>> sum(gs(:,2)>50)
ans =

20

“How many samples contain more than 30% silt or more than 25% clay?”

>> sum(gs(:,2)>30 | gs(:,3)>25)
ans =

90

“How many samples contain more than 40% sand, less than 40% silt and more than 40% clay?”

>> sum(gs(:,1)>40 & gs(:,3)<40 & gs(:,3)>40)
ans =

0

12.5 Solution: The Safe Cracker

The solution to this exercise is a M-function which requires the following basic parts:

1. A name, we’ll use safe crack

2. Three inputs, the guessed digits of the combination which we will call A, B and C

3. Testing the combination and sending reports to the screen.

4. An output that we’ll call status which tells us the state of the safe (1 corresponds to
open, 0 to closed).

Therefore the header line of our M-function will look like:

function status=safe crack(A,B,C)
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and we can save the function with the filename safe crack.m. We also need to set three digits
within the function which will act as the true combination of the safe. We’ll call the values
Atrue, Btrue and Ctrue and you can give them any single digit values you want. For example:

Atrue=6; Btrue=3; Ctrue=7;

We also need to record the status of the safe, i.e. open or closed. At this stage we’ll as-
sume that the safe is going to open, then if any of the combination digits are wrong we’ll set
the status of the safe to closed (this might be seem like a strange way to proceed but hopefully
you’ll see how simple it makes the problem). Now we can set the value of the status variable:

status=1;

Now we must test each of the guessed digits separately using a logical operator and return
(an example of this is given in the original exercise). We’ll test each value, if a given value is
correct we’ll send a message to the screen saying so, otherwise we’ll send a message that the
value is wrong and change the value of status to 0.

if A==Atrue %test the first value

disp('The first value is correct')

else

disp('The first value is incorrect')

status=0; %make sure the safe stays closed

end

Testing the second and third values follow the same pattern, so our final M-function (including
comments and help information) will look like the following code.

function status=safe crack(A,B,C)

%safe crack - guess the combination of a safe

%

% Syntax: status=safe crack(A,B,C)

%

% Inputs:

% A - the first digit of the combination

% B - the second digit of the combination

% C - the third digit of the combination

% Outputs:

% status - state of the safe(1=open, 0=closed=

%

% Other m-files required: none

% Subfunctions: none

% MAT-files required: none

%

% Author: Dave Heslop

% Department of Geosciences, University of Bremen
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% email address: dheslop@uni-bremen.de

% Last revision: 6-Dec-2008

%------------- BEGIN CODE --------------%

Atrue=6; Btrue=3; Ctrue=7; % set the combination

status=1; %assume the safe will open

if A==Atrue %test the first value

disp('The first value is correct')

else

disp('The first value is incorrect')

status=0; %make sure the safe stays closed

end

if B==Btrue %test the first value

disp('The second value is correct')

else

disp('The second value is incorrect')

status=0; %make sure the safe stays closed

end

if C==Ctrue %test the first value

disp('The third value is correct')

else

disp('The third value is incorrect')

status=0; %make sure the safe stays closed

end

%------------- END CODE --------------%

12.6 Solution: An even worse safe

The extension to the previous function to test if the guessed digit is within ±1 of the true digit
is simple and we’ll save the new function with the name safe crack2.m. Before we tested if the
guessed digit was equal to the true digit with the == operator, for the new test we need to
check the guess is both greater than or equal to the true digit minus 1 and less than or equal
to the true digit plus 1. In the case of the first digit A we can do this with the relational and
logical operators:

A>=Atrue-1 & A<=Atrue+1

This means our final function with modifications for each of the three digits will look like:

function status=safe crack2(A,B,C)
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%safe crack - guess the combination of a safe within -1 or +1

%

% Syntax: status=safe crack(A,B,C)

%

% Inputs:

% A - the first digit of the combination

% B - the second digit of the combination

% C - the third digit of the combination

% Outputs:

% status - state of the safe(1=open, 0=closed=

%

% Other m-files required: none

% Subfunctions: none

% MAT-files required: none

%

% Author: Dave Heslop

% Department of Geosciences, University of Bremen

% email address: dheslop@uni-bremen.de

% Last revision: 6-Dec-2008

%------------- BEGIN CODE --------------%

Atrue=6; Btrue=3; Ctrue=7; % set the combination

status=1; %assume the safe will open

if A>=Atrue-1 & A<=Atrue+1 %test the first value

disp('The first value is correct')

else

disp('The first value is incorrect')

status=0; %make sure the safe stays closed

end

if B>=Btrue-1 & B<=Btrue+1 %test the first value

disp('The second value is correct')

else

disp('The second value is incorrect')

status=0; %make sure the safe stays closed

end

if C>=Ctrue-1 & C<=Ctrue+1 %test the first value

disp('The third value is correct')

else

disp('The third value is incorrect')

status=0; %make sure the safe stays closed

end

%------------- END CODE --------------%
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12.7 Solution: Life’s ups and downs in the Logistic Map

This exercise may appear to be more difficult that it actually is. As discussed in the exercise
the simplest approach is to write code for a single realization of r and xinitial and then extend
it to consider multiple cases. For the single case we first need to generate a random value of
xinitial between 0 and 1 and r between 0 and 4. To do this we can use the rand function which
gives uniformly distributed random numbers in the range 0–1:

x=rand(1);

r=rand(1)*4;

Once we have these starting values we can employ a loop to iterate the logistic equation a
total of 2000 times, each time updating the existing value of x.

for i=1:2000

x=r.*x*(1-x);

end

The value of x will now represent xfinal for our specific case of r and xinitial. To extend this
code to a large number of realizations so that we can plot the logistic map we need to generate a
large number of values of r and xinitial (in this example we’ll use 10000). Then we loop through
each realization, iterating the logistic equation 2000 times to produce all the values of xinitial.
You’ll see that to iterate the equation for all the different cases we need to use two loops inside
each other:

N=1e4 %total number of realizations

x=rand(N,1); %generate the initial populations

r=rand(N,1)*4; %generate the values of r

for j=1:N %loop through all the realizations

for i=1:2000 %iterate the logistic equation

x(j)=r(j).*x(j)*(1-x(j)); %update the population

end

end

Finally we just need to plot the data and label the axes:
plot(r,x,'.')

ylabel('x {final}')
xlabel('r')
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12.8 Solution: Plotting elevation data

The exercise requires loading and plotting the elevation data from the file Hawaii.mat. The first
task is to load the data and look at the variables:

>> load Hawaii

The first thing we need to do is make regularly spaced arrays of latitude and longitude, which
pass from their minimum to maximum values in steps of 0.1o. To do this we can use the func-
tions min and max, we’ll call the arrays X (for the longitude) and Y (for the latitude).

>> X=[min(longitude):0.1:max(longitude)];

>> Y=[min(latitude):0.1:max(latitude)];

Now we’ll make regular grids called Xgrid and Ygrid from the X and Y arrays using the meshgrid
function and then interpolate the elevation data onto the grids.

>> [Xgrid,Ygrid]=meshgrid(X,Y);

>> Zgrid=griddata(longitude,latitude,elevation,Xgrid,Ygrid);

To plot the topographic surface we need to make a copy of Zgrid, which we’ll call topo,
and the replace all the values below zero with 0. This basically means we are taking all the
points below sealevel and replacing them with zeros. Then we’ll plot the data using surf and
add labels to the axes.

>> topo=Zgrid; %make a copy of the data

>> idx=find(topo<0); %find the indicies of the points below zero

>> topo(idx)=0; %replace these points with zeros

>> figure %create a new figure window

>> surf(Xgrid,Ygrid,topo) %plot the data grids as a surface

>> xlabel('Longitude [o]') %add a x-axis label

>> ylabel('Latitude [o]') %add a y-axis label

>> zlabel('Height [m]') %add a z-axis label

Producing a bathymetric map follows exactly the same ideas, except this time when we make a
copy of the data we will replace the height values greater than zero with 0.

>> bath=Zgrid; %make a copy of the data

>> idx=find(bath>0); %find the indicies of the points above zero

>> bath(idx)=0; %replace these points with zeros

>> figure %create a new figure window

>> surf(Xgrid,Ygrid,bath) %plot the data grids as a surface

>> xlabel('Longitude [o]') %add a x-axis label

>> ylabel('Latitude [o]') %add a y-axis label

>> zlabel('Depth [m]') %add a z-axis label
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12.9 Solution: The Geiger counter

We can obtain our best estimate by finding the value of Ntrue which produced the minimum
squared difference of the count rate equation with the observed count rate. We can write a
inline function to measure this difference, it will use given values of Ntrue and τ to calculate a
guess of Nobs using the count rate equation and then take the squared difference with the actual
value of Nobs.

>> f=inline('(Ntrue.*exp(-Ntrue.*tau)-Nobs)^2','Ntrue','Nobs','tau')

The inline function f can now be called in fminsearch where we also need to provide val-
ues for Nobs, τ and an initial guess of Ntrue (in this case we’ll use a value of 9000):

>> x = fminsearch(@(Ntrue) f(Ntrue,20e-6,8000),9000)

12.10 Solution: Sand, Silt and Clay in an Arctic Lake

This exercise brings together all the aspects of data processing with MATLAB, you are required
to import raw data, plot it, perform an analysis and plot the final results. The stages of the
exercise have been described in detail in the main text, so here we will just concentrate on the
required MATLAB steps. The first thing to do is import the data from the EXCEL workbook
Lakegrainsize.xls. When we looked at the workbook in excel we see there are four columns of
data for depth, sand, silt and clay, which are held in the cells A2:A40, B2:B40, C2:C40 and
D2:D40, respectively. With this information we can enter commands into a script file which
will import the data into MATLAB (you will need to change the path for the EXCEL book
according to where it is stored on your computer):

>> clear all, close all

>> depth=xlsread('G:\GLOMAR\final project\Lakegrainsize.xls','A2:A40');
>> sand=xlsread('G:\GLOMAR\final project\Lakegrainsize.xls','B2:B40');
>> silt=xlsread('G:\GLOMAR\final project\Lakegrainsize.xls','C2:C40');
>> clay=xlsread('G:\GLOMAR\final project\Lakegrainsize.xls','D2:D40');

We now have the four variables depth, sand, silt and clay in the memory and our next
task is to plot the grain size data in a ternary plot. To create the ternary plot I have chosen to
use the functions ternplot and ternlabel which can be downloaded from the The Mathworks
File-Exchange, however, there are alternatives are available which you could also use.

>> ternplot(clay,sand,silt,'.b ') %Ternary plot with blue data points

>> hold on

>> ternlabel('Clay','Silt','Sand') %Add labels to the ternary plot

The next steps are probably the most difficult as we need to form regression relationships
between the lake depth and the grain size composition. As discussed in the exercise text the
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first thing to do is form the log-ratios of the grain size components using clay as the denomi-
nator variable:

>> sand clay=log(sand./clay)

>> silt clay=log(silt./clay)

Now we must find the straight-line relationship between the log of depth and the log-ratios
of the grain size components. There are many ways to do this but one of the simplest is to
use the function polyfit, which requires 3 inputs, the independent data which in this case is
the log of depth, the dependant data which in this case is the one of the log-ratios, and finally
the order of the polynomial to be fitted (we want a straight-line which is order 1). The output
variables from polyfit store the structure of the polynomial fit, which for a straight-line is the
values of the gradient and the intercept.

>> p sand clay=polyfit(log(depth),sand clay,1);

>> p silt clay=polyfit(log(depth),silt clay,1);

In order to draw our regression line representing the relationship between lake depth and grain
size composition we must first define a series of depths that we’ll call D. Then we’ll find the
grain size compositions for the log of these depths according our derived regression relation-
ships. This can be done using the function polyval which will evaluate a polynomial with
known coefficients for a given value. You can see in the commands below we supply polyval

with the polynomial coefficients calculated in the previous step and ask it to determine values
at the logs of the new depth points.

>> D=[1:1:500]; %series of new depths for the model

>> sand clay hat=polyval(p sand clay,log(D)); %log(sand/clay) model

>> silt clay hat=polyval(p silt clay,log(D)); %log(silt/clay) model

Our predictions for the grain sizes are still in the form of log-ratios, but we can convert them
back into sand, silt and clay proportions using the equations given in the exercise:

>> sand hat=exp(sand clay hat)./(exp(sand clay hat)+exp(silt clay hat)+1);

>> silt hat=exp(silt clay hat)./(exp(sand clay hat)+exp(silt clay hat)+1);

>> clay hat=1./(exp(sand clay hat)+exp(silt clay hat)+1);

Finally, we just need to add our new regression points as a line in the ternary plot:

>> ternplot(clay hat,sand hat,silt hat,'r') %Add the regression to the plot
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12.11 Solution: Bringing it all together with cars and

goats

The best way to proceed with the problem is to think how we would play the game once and
build that into a repeating process so that we can play millions of times and examine the prob-
ability of the different results. Lets start with the basic mechanics of the game which we can
break down into parts, firstly we need to decide on the combination of goats and car which will
be behind the doors. To make this a bit easier we will always use the sequence car-goat-goat
and randomly generate the door numbers they are behind. This means we need to produce the
numbers 1,2 and 3 in an random order, which can be done by generating three random numbers
and finding the indices which will sort them into ascending (or descending) order, for example:

>> r=rand(3,1);

>> [r,door]=sort(r);

>> door

door =

3

1

2

This means that for this specific game the car would be behind door 3 and goats would be
behind doors 1 and 2. The same process can be combined into a single line:

>>[door,door]=sort(rand(3,1));

We can perform a similar process to obtain the first guess of the contestant, again we’ll generate
the numbers 1,2 and 3 in a random order and take the first number as the guess:

>> [guess,guess]=sort(rand(3,1));

>> guess=guess(1)

guess =

1

So in this case the contestants first guess would be that the car is behind door 1. Now we
can test the first case, did the contestant correctly guess the door in the first instance, if they
did we then have to decide what happens at the next stage, will they stick with their original
choice, in which case they will win the car, or will they switch, in which case they will win a
goat. To represent the choice of wether to switch doors or not we’ll generate a random number
between 0 and 1, if the value is <0.5 the contestant sticks with the original door, of the number
is >0.5 they will switch.

switch door=rand(1);

if guess==doors(1) %the correct door was chosen at the beginning
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if switch door<0.5 %if the number is <0.5 the door isn’t switched

disp('You win a car')

end

end

The opposite situation is a simple extension of this, if the contestant did not originally choose
the correct door then they will only win a car if the value of switch door is greater then 0.5.
Therefore both possibilities to win the car can be written as:

switch door=rand(1);

if guess==doors(1) %the correct door was chosen at the beginning

if switch door<0.5 %if the number is <0.5 the door isn’t switched

disp('You win a car')

end

end

if guess∼=doors(1) %an incorrect door was chosen at the beginning

if switch door>0.5 %if the number is >0.5 the door is switched

disp('You win a car')

end

end

We now have the structure of the code with which we can play a single game, but we need
to make adjustments so that we can play it repeatedly. If you remember our original question
we wanted to know if we are more likely to win if we switch doors (which we’ll call a type1 win)
rather than sticking with the same door (a type2 win). All we need to do is place the game
simulation within loop so that we can run it a number of times and add up the number of type1
and type2 wins. Finally, we can find the relative probabilities by calculating the total number
of type1 wins compared to the total number of wins.

type1 total=0;

type2 total=0;

for iter=1:1e5

[doors,doors]=sort(rand(3,1));

[guess,guess]=sort(rand(3,1));

guess=guess(1);

switch door=rand(1);

if guess==doors(1) %the correct door was chosen at the beginning

if switch door<0.5 %if the number is <0.5 the door isn’t switched

type2 total=type2 total+1;

end

end
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if guess∼=doors(1) %an incorrect door was chosen at the beginning

if switch door<0.5 %if the number is >0.5 the door is switched

type1 total=type1 total+1;

end

end

end

prob=type1 total./(type1 total+type2 total)
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