Evaporation trend in ▶ Results in increased vertical gradients ▶ Across region, heads in deep aquifers decreasing ▶ Results in increased vertical gradients compared to historical values

Across region, heads in deep aquifers decreasing ▶ Irrigation locally increases recharge of shallow aquifer ▶ Results in further enhancement of vertical gradients

Vertical Flux?

- Steep gradients present potential for vertical flow of saline water
- Initial flux estimates made based on physical (head) measurements
 ▶ Complex transient problem: pumping, irrigation, river leakage
 ▶ Further complicated by unknown extent of aquitard windows
- Can use hydrochemistry to improve head-based flux estimates
- Must choose representative parameters to model system

Evaporation trend in 18H/18O data
- Consistent with 25%-50% humidity
- Groundwater trend suggests mixing of depleted and enriched waters
- In general, 18O in Shepparton > Calivil > Renmark
- Temporally, small changes in 18H/18O values at a given location
- Spatially, 18O increases in all aquifers with groundwater flow, from east (above right) to west (above left) before a step-decrease beyond the irrigation areas.

Cluster Analysis

- Samples: data are more homogeneous in Renmark, Calivil than Shepparton
 ▶ Two general clusters corresponding to eastern and western GMA
 ▶ Smaller clusters and poorer spatial correlation in Shepparton
- Analytes: samples from each aquifer show similar data structure
 ▶ Two general clusters corresponding to meteoric/vertical recharge (A) and water-rock interaction (B)

Conclusions

- Geochemical data support vertical mixing of waters between aquifers
 ▶ Increasing 18H/18O and Cl in all aquifers in direction of GW flow
 ▶ Groundwater chemistry influenced by vertical recharge of evaporated water
- Mixing less apparent in non-irrigated areas
 ▶ More depleted 18H/18O down gradient of irrigation areas
 ▶ Lower TDS concentrations in groundwater samples
 ▶ Smaller vertical gradients
 ▶ Water-rock interaction appears to significantly influence groundwater composition
- Differences in chemical composition can be used to quantify flux between aquifers
 ▶ Vertical differences between aquifers, horizontal differences within aquifers
 ▶ 18H/18O and Cl good indicators of mixing
 ▶ Si, K and other silicate mineral components also potentially useful

Future Research

- Calculate fluxes using geochemical data and compare to physical estimates
 ▶ Focus on 2D transects through irrigation areas
- Further characterization of regolith and mixing end members
 ▶ Regolith, precipitation sampling
- Measure seasonal variation in surface water
- Radiotopes (14C) to constrain mixing time frames
 ▶ 3H if mixing occurred in recent history

References