PHYS3070 Physics of the Earth: from seismic structure to geodynamics

‘Geophysics … has the rigour of physics and the vigour of geology’

C. M. R. Fowler

Goal: to connect the seismological investigation of the Earth’s internal structure (Hrvoje Tkalcic’s segment) with Paul Tregoning’s component concerning geodetic observations of surface deformations

ian.Jackson@anu.edu.au

WebCT

http://rses.anu.edu.au/people/jackson_i/PHYS3070/
Part I: Elasticity, equations-of-state & interpretation of seismological models

Tensor stress & strain
Constitutive law & elastic waves
Elasticity & interatomic forces
Geophysical thermodynamics
Lattice vibrations & thermal energy
Anharmonicity & thermal expansion
Finite strain & cohesive energy @ high pressure
Mie-Grüneisen equation-of-state & thermal pressure
Anelasticity & seismic wave attenuation
Interpretation of seismological models

The End
References

Inversion of traveltime versus angular distance & free-oscillation data for spherically averaged structure
Seismological models for the transition zone of the Earth’s mantle

Seismological models for bulk sound speed $V_\phi = (K_\phi/\rho)^{1/2}$ vs depth

Jackson & Rigden, In The Earth’s Mantle, 1998
Lateral variations of seismic wave speeds in the upper mantle

Surface-wave tomographic model of Fishwick et al. (2005)
V_S variations (%) at 200 km depth
Recap on elasticity: tensor strain

Displacement
gradient tensor

\[e_{ij} = \frac{\partial u_i}{\partial x_j} (i, j = 1, 2, 3) \]

\[u_i = e_{ij}x_j \] for homogeneous deformation

Rigid-body rotation:

\[e_{21} = -e_{12} = \delta \theta \neq 0 \]

\[\therefore \text{define strain as symmetrical part of } e_{ij} \]

\[\varepsilon_{ij} = \frac{1}{2}(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}) \]
Recap on elasticity: tensor stress

\(\sigma_{ij} \) is the component of force parallel to \(x_i \) per unit area oriented normal to \(x_j \) (exerted on the infinitesimal element by the surrounding medium; tension +ve)

Rotational equilibrium requires \(\sigma_{ji} = \sigma_{ij} \)

Translational equilibrium ➔ the wave equation

\[\rho \frac{\partial^2 u_i}{\partial t^2} = \frac{\partial \sigma_{ij}}{\partial x_j} \]
Elasticity: constitutive law & elastic waves

Generalisation of Hooke’s law: \(\sigma_{ij} = c_{ijkl} \varepsilon_{kl} \)

For isotropic medium: \(\sigma_{ij} = \lambda \delta_{ij} \varepsilon_{kk} + 2\mu \varepsilon_{ij} \)

Kronecker ‘delta’ \(\delta_{ij} = 1 \) (for \(i = j \)), 0 (for \(i \neq j \))

Einstein summation convention \(\varepsilon_{kk} = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33} = \Delta \)

(known as the dilatation)

The wave equation \(\rho \partial^2 u_i/\partial t^2 = \partial \sigma_{ij}/\partial x_j \) becomes

\[
\rho \partial^2 u_i/\partial t^2 = \lambda \delta_{ij} \partial^2 u_k/\partial x_j \partial x_k + \mu (\partial^2 u_i/\partial x_j \partial x_j + \partial^2 u_j/\partial x_j \partial x_i)
\]

Substit’n of trial plane-wave solution \(u_i = u_{i0} f(n_r - vt) = u_{i0} f(n_m x_m - vt) \)

\(\rightarrow \) system of 3 eqns. linear in \(u_{i0} \) for given \(n_m \)

\(\rightarrow \) 3 eigenvalues given by cubic in \(\rho v^2 \)

1 compressional mode \(\rho v_p^2 = \lambda + 2\mu = K + (4/3)G \)

2 orthogonal shear modes \(\rho v_s^2 = \mu = G \)
‘Geophysical’ thermodynamics: the internally consistent framework for understanding the Earth’s internal structure

First law of thermodynamics (conservation of energy embodying the equivalence of heat and work and their relationship with internal energy E)

$$dE = dQ - PdV; \text{ substitute for entropy } S \text{ defined by } dS = dQ/T, \text{ to get}$$

$$dE(S,V) = TdS - PdV$$

Similar expressions for the other thermodynamic potentials:

Enthalpy $H = E + PV$

$$dH(S,P) = TdS + VdP$$

Helmholtz free energy $F = -kT \ln Z = E - TS$

$$dF(V,T) = -PdV - SdT$$

Gibbs free energy $G = H - TS = E + PV - TS$

$$dG(P,T) = VdP - SdT$$

Z is the partition function of statistical mechanics

References: Stacey, Appendix E; Poirier, Ch. 1
Useful thermodynamic identities

Tools for functional analysis:
For $Z = Z(X,Y)$,
\[
dZ = \left(\frac{\partial Z}{\partial X}\right)_Y dX + \left(\frac{\partial Z}{\partial Y}\right)_X dY,
\]
\[
\frac{\partial^2 Z}{\partial X \partial Y} = \frac{\partial^2 Z}{\partial Y \partial X}, \quad \&
\]
\[
\left(\frac{\partial Z}{\partial X}\right)_W = \left(\frac{\partial Z}{\partial X}\right)_Y + \left(\frac{\partial Z}{\partial Y}\right)_X \left(\frac{dY}{dX}\right)_W
\]
\[
\left(\frac{\partial Z}{\partial Y}\right)_X = \left(\frac{\partial Z}{\partial W}\right)_X / \left(\frac{\partial Y}{\partial W}\right)_X
\]

Applications in deriving thermodynamic identities:

$E(S,V)$: \(\left(\frac{\partial E}{\partial S}\right)_V = T \quad \left(\frac{\partial E}{\partial V}\right)_S = -P \quad \left(\frac{\partial T}{\partial V}\right)_S = -(\frac{\partial P}{\partial S})_V \)

$H(P,S)$: \(\left(\frac{\partial H}{\partial S}\right)_P = T \quad \left(\frac{\partial H}{\partial P}\right)_S = V \quad \left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P \)

$F(V,T)$: \(\left(\frac{\partial F}{\partial V}\right)_T = -P \quad \left(\frac{\partial F}{\partial T}\right)_V = -S \quad \left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T \)

$G(P,T)$: \(\left(\frac{\partial G}{\partial P}\right)_T = V \quad \left(\frac{\partial G}{\partial T}\right)_P = -S \quad \left(\frac{\partial V}{\partial T}\right)_P = -(\frac{\partial S}{\partial P})_T \)
Applications of thermodynamic identities

Thermal pressure

\[
\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T = \alpha K_T \implies (dP_{th})_V = (\gamma/V) \ dE_{th}
\]

(Grüneisen parameter: \(\gamma = \alpha K_T V/C_V\))

Isobaric & isochoric derivatives (\(\partial Z[X,Y]/\partial X\)\(_W\) with \(X = T\), \(Y = V\) & \(W = P\):

\[
(\partial Z/\partial T)_P = (\partial Z/\partial T)_V + (\partial Z/\partial V)_T (\partial V/\partial T)_P = (\partial Z/\partial T)_V - \alpha K_T (\partial Z/\partial P)_T
\]

e.g., \(C_P= (\partial Q/\partial T)_P = T(\partial S/\partial T)_P = T(\partial S/\partial T)_V + V\alpha T(\partial S/\partial V)_T = C_V[1 + \alpha \gamma T]\)

Isothermal & adiabatic derivatives (\(\partial Z[X,Y]/\partial X\)_\(W\) with \(X = V\), \(Y = T\) & \(W = S\):

\[
(\partial Z/\partial V)_S = (\partial Z/\partial V)_T + (\partial Z/\partial T)_P (\partial T/\partial V)_S
\]

e.g., (\(\partial P/\partial V\)_\(S\) = (\(\partial P/\partial V\)_\(T\) + (\(\partial P/\partial T\)_\(V\)(\(\partial T/\partial V\))\)

hence \(K_S = K_T[1 + \alpha \gamma T]\)

Adiabatic temperature gradient

\[
(\partial T/\partial P)_S = (\partial V/\partial S)_P = (\partial V/\partial T)_P/(\partial S/\partial T)_P = \gamma T/K_S
\]

\[
(\partial \ln T/\partial \ln \rho)_S = -(\partial \ln T/\partial \ln V)_S = \gamma
\]

Stacey Appendix E, Poirier Ch. 1
Elasticity & interatomic forces

Volume per ion pair $V = 2r^3$

Internal energy $E = -C_0/r + D_0/r^n = -C(V/V_0)^{-1/3} + D (V/V_0)^{-n/3}$

$P = -dE/dV$ [strictly $-(\partial F/\partial V)_T$ with $F = E - TS$]

Bulk modulus $K_T = -V(\partial P/\partial V)_T$

Pressure derivative of $K_T' = (\partial K_T/\partial P)_T$

$\therefore K_0V_0 = (C/9)(n-1) \propto d^2E/dV^2 \sim $ constant for isostructural compounds & $K'_0 = (n+7)/3$
Interplanar forces & lattice vibrations

Sequence of identical parallel planes of atoms interacting with neighbours:

\[\mathbf{F}_n = -K [u_n - u_{n-1}] + K [u_{n+1} - u_n] = M \frac{\partial^2 u_n}{\partial t^2} \]

Trial solution \(u_n = u_0 \sin(kx_n - \omega t) \) with \(x_n = na \)
Dispersion relation for lattice vibrations

Condition for solution: \(\omega = 2(K/M)^{1/2} |\sin(ka/2)| \)

Phase speed for longitudinal vibrations \(c = \frac{\omega}{k} \)

In general, group velocity \(u = \frac{d\omega}{dk} \neq c \rightarrow \text{dispersion} \)

Limit as \(k \rightarrow 0, u = c = a(K/M)^{1/2} \)
Lattice vibrations: acoustic & optic branches

\(p \) atoms per unit cell \(\rightarrow \) 3p modes of vibration

Acoustic modes: \(u_n \) and \(u_{n+1} \) in-phase as \(k \rightarrow 0 \)

Optic modes: \(u_n \) and \(u_{n+1} \) out-of-phase as \(k \rightarrow 0 \)
Quantisation & lattice vibrational energy

Periodic boundary conditions for crystal of length $L = Na$ require $k = m(2\pi/L)$ with $m = 0, \pm 1, \pm 2, \ldots, \pm N/2$.

Density of (k, ω) states in reciprocal (k) space is $g(k) = 1/dk = L/2\pi = Na/2\pi$ such that $\int g(k) dk = N$.

1st approx’n to crystal lattice: collection of independent harmonic oscillators of frequency ν, energy quantum $h\nu$, & (equilibrium) phonon occupancy quantum number $p(\nu, T) = [\exp(h\nu/k_B T) - 1]^{-1} \sim k_B T/ h\nu$ @ high T (Bose-Einstein statistics)

$E_{vib}(T) = \sum_{i=1,N} h\nu_i p(\nu_i, T) = \int p(\nu, T) h\nu g(\nu) d\nu$
The Debye model of lattice vibrations

Key assumptions: all modes acoustic & non-dispersive \((\omega = \nu_D k)\)
& uniformly distributed within spherical BZ of radius \(k_D\) to match actual BZ volume \(\Rightarrow\) density of states \(g(\nu) = \frac{9m\nu^2}{\nu_D^3}\)
Normalisation: \(\int (0, \nu_D) g(\nu)d\nu = 3m, m \text{ atoms per unit cell}\)

\[\omega \propto k \quad g(\omega) \propto \omega^2\]

\(g(\omega)\) for MgO vs. Debye model
Debye model: thermal energy & specific heat

\[E_D(T) = \int p(\nu, T) \hbar \nu g_D(\nu) \, d\nu \]
\[= (9nRT/x^3) \int_{(0,x)} \xi^3 \, d\xi / [\exp(\xi) - 1] \text{ (per mol)} \]

with \(n \) atoms per formula unit, \(x = \theta/T \)

& Debye temperature \(\theta = h\nu_D/k_B \)

\[C_V(T) = (\partial Q/\partial T)_V = (\partial E/\partial T)_V \]
\[\sim T^3 \text{ as } T \Rightarrow 0, \sim 3R \text{ for } T >> \theta_D \]
Anharmonicity & thermal expansion

Asymmetry of potential well results in time-averaged inter-atomic spacing greater than static equilibrium value, reduced inter-planar stiffness constants, K & reduced vibrational frequencies $\nu \sim (K/M)^{1/2}$

Quasi-harmonic approximation: $\nu_i = \nu_i(V)$

with $\gamma_i = -\frac{d\ln\nu_i}{d\ln V} = -\frac{d\ln\theta_D}{d\ln V} = \gamma_D$
Finite strain & cohesive energy @ high pressure

\[K_T = -V(\partial P/\partial V)_T = K_0, \text{ constant} \]
integrates to \(P = -K_0 \ln (V/V_0) \) but incompressibility must increase with \(P \):
e. g., \(K'_0 = (\partial K_T/\partial P)_{T0} = (n+7)/3 \)
for rocksalt lattice

Eulerian finite strain \(\varepsilon_{ij} = (1/2)(\partial u_i/\partial X_j +\partial u_j/\partial X_i) \)
- \((1/2)\sum_k (\partial u_k/\partial X_i)(\partial u_k/\partial X_j) \) (Poirier, p. 60)

P \rightarrow isotropic compressional finite strain \(\varepsilon: V_0/V = \rho/\rho_0 = (1-2\varepsilon)^{3/2} \)

Taylor series expansion of Helmholz free energy \(F = E - TS \):
\[F(V,T) = a_0 + a_1 f + a_2 f^2 + a_3 f^3 + \ldots \text{ with } a_i = a_i(T) \& f = -\varepsilon \]
3rd-order Eulerian finite strain isotherm $P(V)$

Now $P = - (\partial F/\partial V)_T = - (\partial F/\partial f)_T / (\partial V/\partial f)_T$

$K_T = - V(\partial P/\partial V)_T = - V(\partial P/\partial f)_T / (\partial V/\partial f)_T$

$K'_T = (\partial K_T/\partial P)_T = (\partial K_T/\partial V)_T / (\partial P/\partial V)_T$

$= (\partial K_T/\partial f)_T / [(\partial V/\partial f)_T (\partial P/\partial V)_T] = -(V/K_T)(\partial K_T/\partial f)_T / (\partial V/\partial f)_T$ etc.

Thus $P = (1/3V_0)(1 + 2f)^{5/2}(2a_2f + 3a_3f^2)$ (P = 0 for strain f = 0)

$K_T = (1/9V_0)(1 + 2f)^{5/2}[2a_2 + (14a_2+6a_3)f + 27a_3f^2]$

$K'_T = (1/3)[24a_2 + 6a_3 + (98a_2 + 96a_3)f + 243a_3f^2]/$

$[2a_2 + (14a_2+6a_3)f + 27a_3f^2]$

Initial conditions: $K_T = K_{T_0}$, $K'_T = K'_{T_0} \rightarrow$

$a_2 = 9K_{T_0}V_0/2$, $a_3 = (9K_{T_0}V_0/2)(K'_{T_0} - 4)$

Hence 3rd-order Eulerian (Birch-Murnaghan) isotherm

$P = 3K_{T_0} (1 + 2f)^{5/2} [f + (3/2)(K'_{T_0} - 4) f^2]$
Finite-strain P(V) principal isotherm + Debye model for E(T,V) with $\theta(V)$

Construct $F(V,T) = F_{BM}(V,0) + F_D(V,T)$

$F_D = E_D - TS_D$ with $S = -(\partial F/\partial T)_V \rightarrow F_D = T (\partial F_D/\partial T)_V = E_D$

$\therefore (\partial [F_D/T]/\partial T)_V = -E_D/T^2 & F_D = -T \int_{(0,T)} (E_D/T^2) \, dT = -T \int_{(0,T)} (E_D/T^2) \, dT$

\int by parts \Rightarrow

$F_D = 9nRT(\theta/T)^{-3} \int_{(0,\theta/T)} \xi^2 \ln [1- \exp(-\xi)] \, d\xi$

$P(V,T) = -(\partial F/\partial V)_T = -(\partial F_{BM}/\partial V)_T - (\partial F_D/\partial V)_T$

$\therefore P(V,T) = P(V,0) + (\gamma_D/V) E_D(V,T)$

i.e., thermal pressure: $\delta P_{TH}(V,T) = (\gamma_D/V) \delta E_D(V,T)$

c.f. $\delta P_{TH} = (\gamma/V) \delta E_{TH}$ from $(\partial P/\partial T)_V = \alpha K_T = (\gamma/V)C_V$

$\Rightarrow \gamma = \gamma_D$
The thermal pressure

\[P(V,T) = P(V,0) + P_{TH}(V,T) \]

with \(P_{TH}(V,T) = \left(\frac{\gamma D}{V} \right) E_D(V,T) \)
Mie-Grüneisen-Debye EoS: completeness

From $F(V,T) = F(V,T_0) + F_D(V,T)$

$$= a_2f^2 + a_3f^3 + 9nRT[\theta(f)/T]^{-3} \int_{(0,\theta(f)/T)} \xi^2 \ln [1 - \exp(-\xi)] d\xi$$

[with $\theta(f)$ specified by $\gamma_0 = -(d\ln \theta/d\ln V)_0$ & $q_0 = (d\ln \gamma/d\ln V)_0$]

we have it all:

$$P(V,T) = -(\partial F/\partial V)_T, \quad S(V,T) = -(\partial F/\partial T)_V$$

Hence $E = F + TS, \quad H = E + PV, \quad G = F + PV$

$$C_V = T(\partial S/\partial T)_V$$

$$K_T(V,T) = -V(\partial P/\partial V)_T, (\partial P/\partial T)_V = \alpha K_T(V,T) = (\gamma/V)C_V$$

$$\alpha, \gamma, K_S = K_T(1 + \alpha \gamma T), (\partial T/\partial P)_S = \gamma T/K_S \text{ etc.}$$

Extension to shear strain

(Stixrude & Lithgow-Bertelloni, Geophys. J. Int., 2005)
Modelling the seismic properties of the Earth’s interior

\[P(V,T), K_T(V,T) \text{ & hence } K_S(V,T), G(V,T) \]

from internally consistent finite-strain expansions of both static and thermal parts of the Helmholtz free energy \(F \)

\[\rightarrow \rho(z), V_P(z), V_S(z) \]

For each mineral need

\[F_0, V_0, K_{T0}, K_{T0}', G_0, G_0', \theta_0, \gamma_0, q_0, \eta_{S0} \]

constrained by experimental data and/or ab initio quantum-mechanical calculations
Optimal finite-strain model constrained by diverse experimental data for MgO
Elastic behaviour: essential characteristics

Hookean elasticity:

(i) **Linearity**: stress $\sigma \propto$ strain ϵ

(ii) **Instantaneity**: strain appears (disappears) instantaneously when stress is applied (removed)

(iii) **Recoverability**: strain is fully recovered when stress is removed

No dissipation: time-varying stress and strain in phase

No dispersion: wave speeds are frequency independent
Beyond elasticity: **anelastic** behaviour

Relax requirement of instantaneity \rightarrow **anelasticity**

Stress-induced diffusion of defects or redistribution of fluid occurs with characteristic timescale τ, typically thermally activated and contributes well-defined, delayed component of strain

More strain for the same stress \rightarrow

lower (relaxed) modulus $= \text{stress/strain}$
Strain energy dissipation

Delayed anelastic strain \rightarrow phase lag between stress

$\sigma(t) = \sigma_0 \sin \omega t$ & resulting strain $\epsilon(t) = \epsilon_0 \sin(\omega t - \delta)$

Energy dissipated per cycle

$\Delta E = \int_{(0,2\pi)} \sigma \ d\epsilon = \omega \sigma_0 \epsilon_0 \int_{(0,2\pi)} \sin \omega t \cos(\omega t - \delta) \ dt$

Using $\cos(\omega t - \delta) = \cos \omega t \cos \delta + \sin \omega t \sin \delta$ &

$\sin 2\omega t = 2\sin \omega t \cos \omega t$ and $\cos 2\omega t = 1 - 2\sin^2 \omega t$ obtain

$\Delta E = (\sigma_0 \epsilon_0 / 2) \int_{(0,2\pi)} [\sin 2\omega t \cos \delta + (1 - \cos 2\omega t) \sin \delta] \ d(\omega t) = \pi \sigma_0 \epsilon_0 \sin \delta$

Maximum energy stored

$E_{\text{max}} = \int_{(0,\pi/2)} \sigma \ d\epsilon_{\text{in phase}} = \sigma_0 \epsilon_0 \cos \delta \int_{(0,\pi/2)} \sin \omega t \ d(\sin \omega t)$

$= (\sigma_0 \epsilon_0 \cos \delta) / 2$

Quality factor Q

$Q = 2\pi E_{\text{max}} / \Delta E = 1 / \tan \delta$ or $Q^{-1} = \tan \delta$
Complementary experimental techniques probe a wide range of frequencies (c.f. mHz - Hz of teleseismic waves)
Elastic wavespeeds: ultrasonic methods

Mode-specific piezoelectric or ferroelectric transducers
Generate & detect elastic waves

Simple pulse transmission (time-of-flight) & interferometric methods
Ultrasonic wave-propagation methods: representative results

MgSiO$_3$ perovskite
Li & Zhang
PEPI (2005)

Data fitted to $F(f,T)$ model \Rightarrow

$V_0, K_0, K'_0, G_0, G'_0, \theta_0, \gamma_0, q_0, \eta_{S0}$
Jackson & Kung, *PEPI*, 2008

Silicate perovskite analogue ScAlO$_3$
Opto-acoustic methods: Brillouin scattering

\[V_i = \Delta \omega \lambda / 2 \sin(\theta/2) \ (i = P, S) \]

from Doppler shift \(\Delta \omega \)

Application in diamond-anvil apparatus

\(\Rightarrow \) G(P) to 100 GPa for MgSiO\(_3\) perovskite

\(\Rightarrow \) improved constraints on G'

Murakami et al., *EPSL* (2007)
Forced-oscillation method for laboratory study of anelasticity at seismic frequencies

Implementation within internally heated gas apparatus (Jackson & Paterson, *PAGEOPH*, 1993):

- P = 200 MPa, T to 1300°C
- Oscillation periods 1-1000 s
- Shear strains < 10^{-5}

Specimen & reference assemblies & T profile

Underlying principle

Specimen encapsulation
Seismic-frequency forced-oscillation data for dry melt-free polycrystalline olivine

Jackson, Fitz Gerald, Faul & Tan, JGR, 2002
Modelling elasticity with interatomic potentials

K (quartz) = 39.7 GPa

c.f. 39.3 GPa (measured)

Putnis (1992)
Quantum chemistry: H atom to crystals

Schrödinger equation: \((-\frac{\hbar^2}{2m}) \nabla^2 \psi + V\psi = E\psi\)

Hydrogen atom
Analytical solution: s, p, d, ... orbitals
Energy levels consistent with observed line spectrum

Multi-electron atoms
Electron-electron interaction: no analytic solutions
Aufbau and Pauli exclusion principles: self-consistent field atomic orbitals (a.o.)

Small molecules
Molecular orbitals as linear combinations of a.o. - coefficients chosen to minimise total energy; high e\(^{-}\) density between atoms = chemical bonding

Crystalline solids
Zero K Density functional theory: ground-state energy a unique function of the spatial distribution of electron density;

High-T Quasi-harmonic approach – lattice vibrational frequencies \(\nu(V)\); anharmonic ab initio molecular dynamics.

1998 Nobel prize in chemistry to Kohn & Pople
Seismic properties: ab initio constraints

<table>
<thead>
<tr>
<th></th>
<th>Theory</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{11})</td>
<td>493</td>
<td>482</td>
</tr>
<tr>
<td>(C_{22})</td>
<td>546</td>
<td>537</td>
</tr>
<tr>
<td>(C_{33})</td>
<td>470</td>
<td>485</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>142</td>
<td>144</td>
</tr>
<tr>
<td>(C_{13})</td>
<td>146</td>
<td>147</td>
</tr>
<tr>
<td>(C_{23})</td>
<td>160</td>
<td>146</td>
</tr>
<tr>
<td>(C_{44})</td>
<td>212</td>
<td>204</td>
</tr>
<tr>
<td>(C_{55})</td>
<td>186</td>
<td>186</td>
</tr>
<tr>
<td>(C_{66})</td>
<td>149</td>
<td>147</td>
</tr>
</tbody>
</table>

\(\Delta E = (1/2)C \varepsilon^2\)

\textit{MgSiO}_3\textit{ perovskite: single-crystal elastic constants (GPa)}

Oganov et al. (2001)
Single-crystal elastic anisotropy: olivine

triangular clusters of edge-sharing MO$_6$ octahedra capped by SiO$_4$ tetrahedra form stiff columns \Rightarrow high V_p along [100]

Polyhedral structure of olivine (Putnis, 1992)

Mainprice (2007)
Treatise on Geophysics
Bulk Earth composition & pressure-induced phase transformations

Pyrolite model upper-mantle composition = magma (basalt) + residue (harzburgite) Green & Ringwood (1960’s)

Crystal structures of high-pressure minerals

(Mg,Fe)SiO$_3$ perovskite

(Mg,Fe)O magnesiowüstite

CaSiO$_3$ perovskite
Gross Earth seismological models

Fowler Fig. 8.1

Fowler Fig. 8.3

Inversion of traveltime versus angular distance & free-oscillation data for spherically averaged structure
Lateral variations of seismic wave speeds in the Australasian upper mantle

Surface-wave tomographic model of Fishwick et al., *EPSL*, 2005

V_S variations (%) at 200 km depth
Optimal geotherms and $V_s(z)$ profiles for contrasting tectonic provinces

Lab-based model inclusive of anelastic relaxation (Faul & Jackson, *EPSL*, 2005)
$V_\phi = \left(\frac{K_s}{\rho} \right)^{1/2} = \left[V_P^2 - \frac{4}{3} V_S^2 \right]^{1/2}$

Composition, elasticity & temperature of the lower mantle

Lower-mantle mineralogy for pyrolite composition

G’ & dG/dT from ultrasonics: pyrolite & 1600 K adiabat OK (Li & Zhang, PEPI, 2005)

Lower mantle: new developments

Post-perovskite \(\text{CaIrO}_3 \) phase of \(\text{MgSiO}_3 \) @ \(P > 120 \) GPa, \(T \sim 2500 \) K
Murakami et al., *Science*, 2004

Pressure-induced spin-pairing in Fe

\(\text{Fe}^{2+} \):
\(3s^23p^63d^64s^0 \)

d-orbital degeneracy removed by the octahedral crystal field (Brown et al., *Chemistry*, 1991)

\(\delta \rho/\rho \sim 1\% \)
Earth’s core: composition & temperature

Preferred hexagonal close-packed structure for pure Fe under inner-core conditions

Core is significantly less dense & somewhat more compressible than pure Fe

Fowler Fig. 8.12b
Ab initio calculation of equations-of-state \(V(P, T) \) & Gibb’s free energies \(G(P, T) \) for both solid and liquid phases → melting temperature \(T_m \) and element partitioning

Can match densities of inner and outer core with thermodynamic equilibrium at inner-outer core boundary:

\[P = 330 \text{ GPa}, T_m = 5600 \text{ K} \]

Inner core: 8 mol% S/Si & 0.3% O
Outer core: 10 mol% S/Si & 8% O

Alfè et al., EPSL, 2002
Stable crystal structure for the inner core?

- Hexagonal close-packed symmetric 12-coordination
- Body-centred cubic split 8-6 coordination with larger interstices

Part I: Elasticity, equations-of-state & interpretation of seismological models

Tensor stress & strain
Constitutive law & elastic waves
Elasticity & interatomic forces
Geophysical thermodynamics
Lattice vibrations & thermal energy
Anharmonicity & thermal expansion
Finite strain & cohesive energy @ high pressure
Mie-Grüneisen equation-of-state & thermal pressure
Anelasticity & seismic wave attenuation
Interpretation of seismological models

The End
Next: Part II Heat transport & geodynamics