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[1] Hysteresis loops provide essential information concerning both induced and remanent
magnetizations and are an important tool for characterizing magnetic mineral assemblages.
Although the hysteresis behavior of mixed natural magnetic assemblages has been a
focal point of much recent work, little progress has been made in unmixing of hysteresis
loops into characteristic components. Unmixing strategies can act as cornerstones for
interpretation of rock magnetic data and have become popular for characterizing isothermal
remanent magnetization acquisition curves. Unmixing of hysteresis loops is, however, a
challenging task because the individual component loops in the mixture must meet
stringent shape constraints. We present a new technique for decomposing an ensemble of
hysteresis loops into a small number of end-members based on linear mixing theory.
The end-members are not based on type curves but instead are derived directly from the
hysteresis data. Particular attention is paid to the form of the end-members, ensuring they
meet the shape constraints expected for hysteresis loops of natural magnetic mineral
assemblages. Marine sediments from the Southern Ocean and lake sediments from Butte
Valley, northern California, provide case studies on which the proposed unmixing method
is tested.
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1. Introduction

[2] A large proportion of the magnetic mineral assem-
blages that occur in nature are composed of mixtures of
minerals with different origins [cf. Evans and Heller, 2003].
To quantitatively analyze a given magnetic mineral assem-
blage and to draw inferences from its composition, it is
necessary to identify and quantify its constituent magnetic
components. The need for such quantification has been
demonstrated over the last 30 years, with a strong focus
being placed on decomposition of isothermal remanent
magnetization (IRM) acquisition curves using a variety of
approaches [Thompson, 1986; Robertson and France, 1994;
Stockhausen, 1998; Kruiver et al., 2001; Heslop et al., 2002;
Egli, 2003, 2004a, 2004b; Heslop and Dillon, 2007].
[3] Hysteresis measurements play a key role in many rock

and environmental magnetic investigations, and provide
information concerning both the induced and remanent
contributions to the magnetization. Compared to IRM
acquisition curves, however, little attention has been given
to the decomposition of hysteresis loops to quantify mixed
magnetic mineral assemblages. A number of theoretical and
experimental studies have employed forward modeling to
investigate how magnetic mixtures are represented in hys-
teresis data with the aim of providing reference curves to
which measured loops can be compared [Roberts et al.,

1995; Tauxe et al., 1996; Dunlop, 2002; Lanci and Kent,
2003; Heslop, 2005; Dunlop and Carter-Stiglitz, 2006;
Carvallo et al., 2006]. Less focus, however, has been placed
on the “unmixing” problem whereby hysteresis data are
decomposed into meaningful components based only on the
measured data and a number of theoretical/empirical
assumptions [von Dobeneck, 1996; Lascu et al., 2010].
[4] Calculation of a solution that contains physically

realistic components is the primary obstacle for unmixing
hysteresis data. Jackson and Solheid [2010] outlined a
number of shape properties that the majority of hysteresis
loops can be expected to follow. These shape properties,
which are expressed in terms of magnetization, M, as a
function of applied field, B, are summarized in Figure 1 and
play a key role in modeling hysteresis data.
[5] Inspired by the work of Rivas et al. [1981], von

Dobeneck [1996] proposed to fit the induced and remanent
parts of a hysteresis loop using fictitious coercive particle
classes based on hyperbolic basis functions. The advantage
of such functions is their similarity in shape to the form of
typical hysteresis loops. Thus, when mixed together in
various combinations, hyperbolic functions should produce
curves that meet the shape requirements for physically
realistic hysteresis loops. von Dobeneck [1996] proposed
that a library of hyperbolic basis functions should be gen-
erated and then numerical optimization can be employed to
determine in what proportions the basis functions should be
combined to provide a best fit to the experimental data.
These proportions can then be represented as hyperbolic
spectra for both the induced and remanent parts of the
hysteresis loop to aid identification and quantification of
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discrete mineral or domain state fractions. Jackson and
Solheid [2010] subsequently showed that not all hysteresis
loops follow a form that can be approximated by hyperbolic
functions, for example, those that contain multiple inflec-
tions. To provide a more flexible library of basis curves,
Jackson and Solheid [2010] proposed the use of sigmoid
logistic functions that are offset horizontally and vertically
to produce double-logistic curves.
[6] The principal limitation of fitting libraries of basis

curves to a measured hysteresis loop is that the problem is
extremely ill-conditioned, which arises from the strong cor-
relation that exists amongst the basis curves. This means that
the regression problem suffers from multicollinearity; small
changes in the data can therefore lead to large changes in the
estimated mixing coefficients [Marques de Sá, 2007].
Multicollinearity is not an issue if the aim of the fitting
procedure is to simply obtain a smoothed approximation to
a measured loop (à la Jackson and Solheid [2010]). It is,
however, a serious problem if the mixing coefficients are to
be interpreted to draw inferences concerning the composi-
tion of the magnetic mineral assemblage in terms of discrete
components.
[7] Previous unmixing methods applied to IRM acquisi-

tion curves have focused on decomposing the data using
collections of parametric functions [Robertson and France,
1994; Kruiver et al., 2001; Heslop et al., 2002; Egli, 2003,
2004a, 2004b]. More recently, Heslop and Dillon [2007]

employed an “end-member” unmixing strategy designed to
provide a genetically meaningful decomposition of IRM
acquisition data by separating suites of curves into collec-
tions of invariant parts. Such an unmixing is based on
examination of the covariation of behavior across a collec-
tion of samples to define a mixing space empirically and
thus focuses on the processes that control the magnetic
mineral assemblage. In this way, there is no requirement for
an individual end-member to be composed of a single min-
eral or domain state. Instead, it will most likely correspond
to a mixture of different minerals and/or domain states that
originate from a common and compositionally invariant
source.
[8] We present here an unmixing method that is based on

estimation of end-members from collections of hysteresis
loops. In this way, there is no reliance on construction of a
set of appropriate basis functions and the problem is not
influenced by multicollinearity. The proposed unmixing
strategy involves decomposition of a suite of hysteresis
loops into a small number of invariant hysteresis loops that
are considered to be end-members. When mixed together in
specific proportions, these end-members should recreate the
original hysteresis data set. The components can be inter-
preted as being representative of the underlying processes
that control the magnetic mineral assemblage in the studied
samples. The determined mixing coefficients provide a
framework for quantitative interpretation of the hysteresis
loops in terms of processes that gave rise to the mixed
magnetic mineral assemblage. The general unmixing prob-
lem and its possible solutions are described below with
particular attention on detailed model selection to recover
end-members that represent physically realistic hysteresis
loops. Two case studies are provided to demonstrate the
proposed method. In the first, we investigate marine sedi-
ments from the Southern Ocean [Roberts et al., 2011a] and
demonstrate how hysteresis unmixing can provide informa-
tion to aid design of more detailed experimental investiga-
tions. In the second case study, hysteresis data are examined
for lake sediments from Butte Valley, northern California
[Roberts et al., 1996]; we show how a hysteresis unmixing
model can provide quantitative information to supplement
environmental interpretations.

2. Formulation of the Mixing Model

[9] To construct the unmixing problem, we assume that an
ensemble of n measured hysteresis loops is composed of a
linear combination of p end-member loops, where p ≪ n. To
ensure meaningful comparison, the hysteresis loops must
have been measured using the same field steps and averag-
ing times. Additionally, in the case of assemblages with
paramagnetic/diamagnetic contributions or those with an
extended approach to saturation [Fabian, 2006], the loops
must have been measured to the same maximum field (Bmax)
to ensure consistent high-field correction. A robust mixing
model requires high-quality data sets with measured loops
that close at high fields and that have high signal-to-noise
ratios. Measured loops should be adjusted for both vertical
and horizontal offsets by finding their centers of symmetry
and where necessary the loops should be corrected for drift
(these data preparation operations can be performed using
the approaches outlined by Jackson and Solheid [2010]).

Figure 1. Example of the mathematical properties that
physically realistic hysteresis loops should meet. This case
is given in terms of a lower hysteresis branch, M� (black
curve) measured from the maximum negative field, �Bmax,
to the maximum positive field, Bmax. Rewriting the proper-
ties in terms of an upper branch, M +, is trivial as a result
of the M(B) = �M(�B) inversion symmetry expected for
the hysteresis loops of geological materials. The properties
of the first, third and fourth quadrants are presented. A
monotonic change in magnetization is expected throughout
M�. The lower (upper) branch will be concave up (concave
down) for fields in the interval [�Bmax, 0] and concave
down (concave up) in the interval [Bc, Bmax], where Bc

denotes the coercive force. Within the interval [0, Bc], the
branch may contain one or more inflection points. Finally,
the upper and lower branches should never cross, which
can be represented by the property; M+ � M� ≥ 0.
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Once the loops are centered and drift corrected, any para-
magnetic/diamagnetic contributions can be removed by
estimation of the linear high-field slope, or alternatively,
where necessary a nonlinear approach to saturation correc-
tion can be made [Fabian, 2006; Jackson and Solheid,
2010]. Finally, the corrected loops must be normalized so
that their maximum magnetization, M̂ , is unity. It is impor-
tant to note that when high-coercivity minerals are present,
which do not saturate in typical laboratory fields, M̂ will
underestimate the true saturation magnetization, Ms. This
also has important implications for the final unmixing model
because high-coercivity minerals that are not saturated fully
during hysteresis measurement will be underrepresented.
[10] Under the assumption that hysteresis loops for geo-

logical materials exhibit inversion symmetry [Jackson and
Solheid, 2010], the upper M +(B) and lower M�(B) bran-
ches of a corrected and normalized loop can be used to
estimate the induced hysteretic, Mih, and remanent hyster-
etic, Mrh, curves [Rivas et al., 1981]:

MihðBÞ ¼ ðMþðBÞ þM�ðBÞÞ=2; ð1Þ

MrhðBÞ ¼ ðMþðBÞ �M�ðBÞÞ=2: ð2Þ

Mih should exhibit inversion symmetry through the origin
and Mrh should have reflection symmetry about the M axis.
Therefore, the two sides of the Mih and Mrh curves can be
averaged to help remove measurement noise:

MihðjBjÞ ¼ ðMihðBÞ �Mihð�BÞÞ=2; ð3Þ

MrhðjBjÞ ¼ ðMrhðBÞ þMrhð�BÞÞ=2: ð4Þ

An example of this procedure is given in Figure 2. The final
data are placed in a matrix X = [Mih(B ≥ 0)Mrh(B ≥ 0)],
which is composed of n rows (1 per sample) and l columns
(1 per field for the Mih and Mrh inputs). The Mih and Mrh

curves that represent the end-members are stored in a
p � l matrix, S, and the fractional abundances of each of the
end-members in each of the samples are held in a n � p
matrix, A. The linear mixing system is then given in matrix
notation by

X ¼ ASþ E subject toA ≥ 0;A1p ¼ 1; ð5Þ

where 1p is a column vector of length p composed of ones
and E is a n � p matrix of errors (the difference between

the model and data). The A ≥ 0 constraint ensures that the
relative abundances are nonnegative and, hence, are phys-
ically meaningful. Additionally, each row of A must sum
to unity (enforced by the A1p = 1 constraint), which given
that the hysteresis data have been normalized to M̂ , ensures
conservative mixing. The end-member hysteresis loops can
be obtained by separating the matrix S into its induced
and remanent hysteretic parts and reversing the procedure
outlined in equations (1)–(4). Additionally, the remanent
hysteretic parts of the end-members can be compared directly
to the magnetic components retrieved from analysis of
remanent magnetization curves [Robertson and France, 1994;
Stockhausen, 1998; Kruiver et al., 2001; Heslop et al., 2002;
Egli, 2003, 2004a, 2004b].

2.1. Estimating the Optimal Mixing Model

[11] Solution of the mixing problem involves estimating
both A and S from X. This is a nonlinear problem and a
unique solution to equation (5) cannot exist. Consideration
of the geometry of the problem, however, indicates how a
realistic solution to equation (5) can be obtained. If the end-
member loops are linearly independent and linear additivity
holds [Roberts et al., 1995; Lees, 1997; Carter-Stiglitz et al.,
2001; Carvallo et al., 2006], the observations in X will lie
within a p � 1 dimensional simplex defined by S, with the
end-member compositions given by the positions of the
vertices of the simplex. A p � 1 dimensional simplex of any
size and orientation would satisfy the constraints in equation
(5) providing that it bounds all cases in X. This demonstrates
the nonunique nature of the unmixing problem. To find the
most geologically feasible solution to equation (5) on the
basis of the data, it is necessary to find the smallest volume
p � 1 dimensional simplex that bounds all observations
(Figure 3a). Using this approach, the end-members will be
close to the cases in X and should therefore be characterized
by geologically realistic compositions [Ehrlich and Full,
1987; Craig, 1994; Renner, 1995; Weltje, 1997]. One lim-
itation of this approach, however, is that the determined
end-members may be combinations of the true end-members
if the natural system only produces a limited range of
mixtures. This concept is demonstrated graphically for a
three end-member system in Figure 3b. Under such cir-
cumstances, an attempt to recover the pure end-members
would require extrapolation of the mixing space into
regions with no data coverage. Given the nonunique nature
of the unmixing problem, such an extrapolation is not

Figure 2. (a) An example of a measured hysteresis loop. (b) The remanent hysteretic and induced
hysteretic magnetization curves for example loop in Figure 2a calculated via equations (1)–(4).
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employed here. Any such attempts should be based on a
detailed understanding of the rock magnetism of a sample
set under consideration.
[12] Several algorithms have been developed to find the

minimum volume simplex that bounds a collection of points
in high-dimensional space [Craig, 1994;Miao and Qi, 2007;
Chan et al., 2009]. We use the simplex identification via
split augmented Lagrangian (SISAL) algorithm of Bioucas-
Dias [2009], which has the advantage of being robust to
outliers. Robustness is achieved by making the non-
negativity of A a soft, rather than a hard, constraint. If a case
in X lies outside the simplex defined by S, then one or more
of its corresponding values in A will be negative (Figure 3a).
The SISAL algorithm penalizes negative components of A
proportionally to their magnitude according to a regulariza-
tion parameter l which must be greater than 0. As l is
decreased, the simplex defined by S becomes smaller as
more cases in X are allowed to reside outside the simplex.
Thus, appropriate selection of l makes S resistant to outliers
and to large noise contributions. A strategy for selecting an
appropriate value of l is given below.

2.2. End-Member Constraints

[13] One key aspect for the final determination of S is that
the positions of the vertices correspond to hysteresis loops
that obey the shape constraints outlined in Figure 1. These
shape properties could be included in the determination of S
as a collection of nonlinear inequality and equality con-
straints. Numerical experiments indicate, however, that such
an approach suffers from large numbers of local minima in
which optimization routines become trapped. As an alter-
native approach, the SISAL algorithm is employed accord-
ing to equation (5) . Then, after convergence is reached, the
end-members in S are examined to assess if they are close to
meeting the shape constraints shown in Figure 1. This
assessment provides an important model selection criterion.
Physically unrealistic end-members may be indicative of an
under or overly complex model (i.e., incorrect selection
of p), an inappropriate value of l or more fundamentally
that the samples do not originate from a mixing system or
that they do not obey the assumptions of the model (i.e.,
linear additivity).

Figure 3. (a) Schematic diagram of the construction of a three end-member unmixing model. For a p
end-member model, each hysteresis loop in X should be representable as a single point in p-dimensional
space (marked as circles in the p = 3 example). The best fit model to the data is the smallest p � 1 dimen-
sional simplex that bounds all of the data points (the gray triangle). The vertices of the simplex defined by
the rows of S correspond to the end-member loops in p-dimensional space. Loops, such as xi*, that lie
within the simplex meet the constraints of equation (5), with the values of ai* being nonnegative and sum-
ming to unity. The equation (given with its equivalent form in matrix notation) indicates how a prediction
of xi*, denoted as x̂i∗, can be calculated from the end-member mixing model using both A and S. Loop xj*
lies outside of the mixing space defined by the simplex. Its distance from the other points indicates that it
may potentially be an outlier. For such nonbounded cases, one or more of the values in aj* will be negative
and the constraints of equation (5) are not met. (b) Illustration of the mixing space (gray shading) defined
by the data (circles) compared to the true end-members of the mixing system (A, B and C on the black
triangle). Consider the mixing space bounded by the black line which consists of the three natural end-
members, A, B and C. The natural mixing system is limited in the combinations of the end-members it
produces so that the available samples (circles) only reside within a restricted region of the mixing space
and do not extend to its boundaries. The unmixing algorithm attempts to find the smallest simplex (shaded
region) that will bound the measured data points. The empirical end-members are given by the vertices of
the fitted simplex, which are denoted by the positions of a, b and g, which means they themselves repre-
sent mixtures of A, B and C.
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[14] We propose two metrics to assess the monotonicity,
dM/dB ≥ 0, and noncrossing, M +(B) � M�(B) ≥ 0, con-
straints for hysteresis loops. The monotonicity metric is
calculated by fitting a piecewise cubic Hermite interpolating
polynomial to the upper branch of a given end-member loop
(the end-member loops have inversion symmetry so it is not
necessary to consider the lower branch). The polynomial, f̂ ,
is shape preserving and is not affected by the oscillations
often associated with cubic splines [Kahaner et al., 1989].
The field values at which the derivative of the fitted poly-
nomial crosses zero, i.e., f̂ ′ðBÞ ¼ 0, can be found directly
from its coefficients. The regions of f̂ between the zero-
crossing points define intervals in which f̂ is monotonic. To

assess the overall monotonicity of f̂ , the integral of f̂
′
is

found for each monotone interval (note, because the Mih

curve exhibits inversion symmetry it is only necessary to
consider B ≥ 0). For example, if x and y represent adjacent
zero-crossing points:

I ¼
Z y

x
f̂ ′ðBÞdB: ð6Þ

The increasing intervals (I +) and decreasing intervals (I�) of
f̂ are summed separately and are formed into the ratio:

Iidx ¼ ∑Iþ

∑Iþ þ ∑ I�j j : ð7Þ

For a monotonically increasing (decreasing) magnetization
with respect to the applied field, Iidxwill yield a value of 1(0).

An example of this approach is given in Figure 4, where a
numerically constructed loop with clear nonmonotonic
behavior is examined. Values of Iidx are expected to be
generally high because f̂ ð0Þ = 0 and f̂ (Bmax) = 1 are fixed
points resulting from the unmixing. Therefore, end-members
must show a generally increasing trend with respect to B.
For natural samples, measurement noise in the high-field
portions of loops may reduce Iidx slightly. This is especially
the case for loops that close at low fields and that have been
corrected for paramagnetic/diamagnetic contributions and
are thus flat at high fields.
[15] Calculation of the crossover metric follows a similar

concept to the monotonicity metric. When represented in the
form of Mih and Mrh curves, a hysteresis loop will exhibit a
crossing of the upper and lower branches when Mrh ⩽ 0. A
piecewise cubic Hermite interpolating polynomial is fitted to
the Mrh(B ≥ 0) curve of a given end-member and is exam-
ined for zero crossings that mark the fields at which the
branches M + and M� cross (the Mrh curve exhibits reflec-
tion symmetry about the magnetization axis, therefore it is
not necessary to considerMrh(B < 0)). In a manner similar to
the monotonicity metric, the positive and negative regions of
the fitted polynomial, f̂ , are integrated separately and are
summed according to their sign to give C+ and C�, respec-
tively. These values are then compared to give the crossover
index:

Cidx ¼ ∑Cþ

∑Cþ þ ∑ C�j j : ð8Þ

Figure 4. (a) An example of an upper hysteresis branch that does not exhibit monotonic behavior. (b) For
positive fields the regions of the branch with positive (dark shading) and negative (light shading) deriva-
tives can be compared to quantify the overall monotonicity of the branch in the form of the metric Iidx.
(c) An example of a hysteresis loop with crossovers between its upper and lower branches. (d) The asso-
ciated Mrh curve has negative values when the crossover constraint is violated. Therefore, a comparison
of the regions of the Mrh curve above (dark shading) and below (light shading) zero can be used to quan-
tify the extent of crossovers and form the basis of the Cidx metric.
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A value of Cidx = 1 indicates that there is no crossover
between M + and M�. Cidx → 0 as the extent of crossover
increases. Acceptable values of Cidx depend on the form of
the loop being examined. In the case of high-coercivity
assemblages, which do not saturate in Bmax, Mrh should be
greater than 0 at all positive fields except Bmax. Therefore
even small crossovers at lower fields may be indicative of a
problem with the end-member loop. In contrast, super-
paramagnetic (SP) particles should yield Mrh = 0 for all
fields, in which case small fluctuations can cause large
numbers of small crossovers that will reduce Cidx while the
loop remains effectively realistic. An example of Cidx is
given in Figure 4 where a numerically constructed loop
containing large crossovers is examined. Natural samples
that reach saturation during measurement are not expected to
yield Cidx = 1 because crossovers may occur as a result of
measurement noise in the high-field portion of the loop once
the branches are closed. These crossovers are expected,
however, to be minor and therefore Cidx should be close to 1.
[16] As discussed above, the Iidx and Cidx values associ-

ated with acceptable end-members will change depending on
the form of the given end-member loop. For this reason we
see the primary role of Iidx and Cidx as metrics to compare a p
end-member model with a more complex p + 1 model rather
than parameters with which loops can be deemed to be
unequivocally physically realistic.

2.3. Model Complexity and Selection of l
[17] Model selection in terms of the number of end-

members to be included in the decomposition of X is a
challenging task. If the model does not contain enough end-
members it will not provide a good fit to the measured loops
and the data may not be decomposed sufficiently to allow
clear interpretation in terms of separate processes. Alterna-
tively, if too many end-members are included the mixing
model will be overly complex, which will inhibit interpre-
tation and render the unmixing model ineffective as a tool
with which to understand the hysteresis data set. To guide
model selection, we adopt the principle of parsimony as
proposed by Imbrie [1963] for the specific case of unmixing
models. Imbrie [1963] recommended that the simplest
model (i.e., the one with the minimum number of end-
members) that provides a good fit to the data and that can be
interpreted in a geologically meaningful way should be
deemed to be the most appropriate.
[18] Initial model selection is guided by eigenvector-based

analysis of the data [Ehrlich and Full, 1987]. A collection of
samples generated by a perfect linear mixing system com-
prising p end-members can be described completely by the
first p � 1 eigenvectors of the data set. Principal component
analysis can therefore act as a guide to model selection by
providing an estimate of the proportion of the data variance
that will be accounted for by p end-members (i.e., the data
variance that is accounted for by the first p � 1 principal
components).
[19] Selection of an appropriate value of l (which controls

the size of the fitted simplex) is also key to construction of a
meaningful mixing model. To estimate the optimal value of
l for a given data set we adopt a bootstrap approach com-
bined with the introduced Iidx and Cidx metrics. A single
bootstrap iteration is performed by selecting n rows from the
data matrix, X, to form a new input matrix; Xboot. This

procedure is performed with replacement, thus it is possible
for any given row of X to appear in Xboot more than once.
The mixing model described by equation (5) is then esti-
mated for predefined values of p and l to yield Aboot and
Sboot. On the basis of Sboot, A can be estimated for X and a
convexity error of the solution determined (Appendix A).
The metrics Iidx and Cidx can then be calculated for the end-
members in Sboot. The above procedure can be repeated for a
large number of iterations, typically of the order 103, for
fixed values of p and l to generate distributions of Iidx and
Cidx and the convexity error. For a given p the aim is to find
a value of l that yields a simplex large enough to bound as
many of the observations in X as possible (indicated by a
low convexity error) while maintaining physically realistic
end-members as indicated by values of Iidx and Cidx close
to 1.

3. Case Study 1: Southern Ocean Sediments

[20] A collection of 38 hysteresis loops, measured to a
maximum field of 0.5 T, from Ocean Drilling Program
(ODP) Holes 689D, 690C, 738B and 738C were amal-
gamated into a single data set. ODP Sites 689 and 690 are
situated on Maud Rise in locations estimated to have had
paleowater depths of �1600 m and �2400 m, respectively
[Kennett and Barker, 1990]. The analyzed Maud Rise sedi-
ments are pelagic carbonates of Oligocene age (four samples
from Hole 689D and seven samples from Hole 690C). ODP
Site 738 is located on the southern Kerguelen Plateau with
an estimated paleowater depth of �1750 m. Pelagic car-
bonate samples were taken from Holes 738B (n = 12) and
738C (n = 15) through the Eocene and the Paleocene–
Eocene Thermal Maximum (PETM) intervals, respectively
[Barron et al., 1991].
[21] The measured hysteresis loops have a high signal-to-

noise ratio with a mean Q value of 4.7 [cf. Jackson and
Solheid 2010]. The loops were processed using the method
discussed in section 2 and formed into the data matrix, X.
The first 2 principal components of X explain �94% of the
data variability, while the first 3 principal components
explain �97%. This suggests that a 3 end-member model
will perform well in forming a mixing model for the data,
while addition of a fourth component will provide only a
small improvement. A more detailed model selection pro-
cedure to determine optimal values of p and l was made
using the bootstrap approach outlined above.
[22] For a given value of l, a three end-member model

was calculated using 103 bootstrap iterations. For each
iteration, Iidx and Cidx were calculated for the returned end-
members. The median values of Iidx and Cidx for each
value of l provide useful indicators for model selection
(Figure 5). As expected the three end-member model has
improved convexity error (i.e., samples are being bound by,
or are becoming closer to, the mixing simplex) as l
increases. Simultaneously, however, the quality of the end-
members gradually degrades as l increases and the vertices
of the simplex enter regions that do not correspond to
physically realistic hysteresis loops. In particular, Iidx
becomes low for higher values of l, but such values could
still be attributed to the effects of noise that cause small
fluctuations in the monotonicity of the end-members. Once
l passes a value of �2, little improvement is seen in the
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convexity error while the quality of the loops continues to
degrade slowly. Therefore, l = 2 appears to be a suitable
choice for a three end-member model in the case of the
studied Southern Ocean sediments.
[23] When the selection procedure is repeated for a four

end-member model (Figure 5) one of the end-members
yields a high crossover index even at values of l that yield
unacceptable convexity errors (i.e., many samples are still
not bound by the mixing simplex). The convexity error
improves as l increases but the low values of Cidx indicate
that the unmixing is producing a physically unrealistic end-
member. This comparison of the three and four end-member
solutions demonstrates that a three end-member model is
more successful at bounding the samples while maintaining
end-members that are physically realistic. Allied with the
principal of parsimony [Imbrie, 1963], this observation leads
us to select a three end-member model with l = 2 for the
final mixing model.
[24] The final end-member loops (Figure 6) were deter-

mined by averaging 103 bootstraps with a median convexity
error of approximately �4.2. The large-scale structures of
the end-member loops obey the shape constraints outlined in
Figure 1, and they appear to be physically realistic. The form
of the end-member hysteresis loops and independent infor-
mation concerning the magnetic mineral assemblages at the

investigated ODP sites facilitates characterization of the end-
members.
[25] End-member 1 has a form typical of pseudosingle

domain (PSD) to multidomain (MD) magnetite and is con-
sistent with the PSD magnetite and/or low-Ti titanomagne-
tite identified as a major remanence carrier at ODP Sites 689,
690 and 738 [Florindo and Roberts, 2005; Roberts et al.,
2011a]. The larger grain size of end-member 1 suggests
that it corresponds to a detrital magnetic component. End-
member 2 is characteristic of single domain (SD) material
and given the environmental setting can be attributed to
magnetofossils produced by magnetotactic bacteria [cf. Egli
2004a]. Roberts et al. [2011a] reported the consistent pres-
ence of a biogenic magnetite component throughout the
Eocene sediments of ODP Hole 738B and argued that it is
responsible for the stable palaeomagnetic signal at 738B.
Finally, the hysteresis loop for end-member 3 remains open
at higher fields, which indicates the possible presence of a
high-coercivity contribution. End-member 3 probably cor-
responds to eolian material that is enriched in hematite [cf.
Roberts et al., 2011a].
[26] The mean relative contributions of the end-members

to each of the studied sample sets are shown in Figure 6.
ODP Site 689 is somewhat richer in magnetofossils (end-
member 2) compared to neighboring Site 690, while the
relative abundance of detrital magnetite (end-member 1) is

Figure 5. Model selection statistics for (left) three and (right) four end-member unmixing of the analyzed
Southern Ocean sediment hysteresis loops. Each line represents the span of the medians of a given param-
eter for the end-members obtained from 103 bootstrap iterations. As l increases, the convexity error
improves but at the cost of a slight degradation in the form of the end-members (i.e., reduced monotonicity
and an increase in crossovers). For p = 3, a value of l = 2 is selected because the end-members have
acceptable forms, and for high values of l there is no improvement in the convexity error. For p = 4,
low values of Cidx indicate that one or more end-members contain large crossovers even at low values
of l. This suggests that a low convexity error four end-member mixing model cannot be constructed with
physically realistic end-members. A three end-member mixing model is therefore more physically realistic
for these data.
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lower compared to site 690. This comparison is based on a
small number of samples and slight differences in the com-
positions must be treated with caution. It is possible, how-
ever, that differences in the magnetic mineral assemblages
can be attributed to the different locations and water depths
of the two sites. For example, during the Oligocene, Site 690
is thought to have been bathed in cold Antarctic Bottom
Water, while Site 689 was not [Diester-Haass, 1991]. Earlier
studies have shown that magnetofossil abundance at a given
location is, at least partially, a function of environmental
conditions and thus the differences at the two sites may be a
result of them sitting in different water masses [Hesse, 1994]
and possibly experiencing different nutrient conditions
[Roberts et al., 2011a]. In terms of terrigenous inputs, the
differences between Sites 689 and 690 might result from the
relative importance of supply from different sources. Alter-
natively, the relative contributions of end-members 1 and 3
are only slightly different at Sites 689 and 690 and might
result from local processes such as winnowing that occurred
to a greater extent at Site 689 [Diester-Haass, 1991].
[27] The primary difference between Holes 738B and

738C is the composition of the detrital component, which is
magnetite rich in the case of Hole 738C and hematite rich in
the case of Hole 738B. Given the �20 Myr age difference
between the Hole 738B (Eocene) and Hole 738C (PETM)
sediments, the differences in terrigenous input could have a
number of causes. Roberts et al. [2011a] showed that the
eolian flux at Hole 738B increased gradually from relatively

low levels during the late Eocene. This eolian component
contained a hematite contribution, which accounts for the
high relative abundance of end-member 3 at Hole 738B. In
contrast, the PETM was a time when the global hydrological
cycle was enhanced [Bowen et al., 2004; Pagani et al., 2006;
Harding et al., 2011], making it possible that the relatively
larger detrital magnetite component (end-member 1) at Hole
738C resulted from lower levels of oxidation in the sedi-
ment source areas.
[28] In this example, our proposed hysteresis unmixing

approach can be employed to provide information to aid
design of future studies. On the basis of the unmixing results
the presence of two terrigenous components and a biological
component is hypothesized. Testing this hypothesis would
require more detailed investigations, which would be facili-
tated by the unmixing results.

4. Case Study 2: Plio-Pleistocene Lake Sediments

[29] Plio-Pleistocene fine-grained lake sediment samples
from Butte Valley, northern California, were examined as
part of a number of rock magnetic studies [Roberts et al.,
1995, 1996, 2000; Pike et al., 2001]. These investigations
reveal a complex magnetic mineralogy, which provides an
example to demonstrate the proposed hysteresis unmixing
approach.
[30] The Butte Valley catchment is part of the larger

Klamath basin, and includes basalts and basaltic andesites

Figure 6. The three end-members obtained from the combined mixing model from ODP Sites (top left)
689, (top right) 690 and (bottom left) 738. Each loop is shown as a shaded region indicating the mean loop
�1 standard error (estimated from the bootstrap procedure). For each loop, the coercivity (Bc) and the
ratios of the saturation remanent magnetization to the saturation magnetization (Mrs/Ms) and the median
field of the remanent component of the loop to the coercivity (Brh/Bc) are shown [Fabian and von
Dobeneck, 1997]. Additionally, the monotonicity index, Iidx, and crossover index, Cidx, are given. (bottom
right) Mean relative abundances of the three end-members for each of the studied ODP holes. The total
data set is composed of 38 hysteresis loops, comprising 4, 7, 12 and 15 samples from ODP Holes
689D, 690C, 738B and 738C, respectively.

HESLOP AND ROBERTS: UNMIXING MAGNETIC HYSTERESIS LOOPS B03103B03103

8 of 13



that have been eroded to provide titanomagnetite within the
detrital magnetic component of the lake sediments [Roberts
et al., 1996]. X-ray diffractograms from magnetic mineral
extracts and optical microscopy of the extracts reveal the
presence of hematite in the sediments, which has also been
assumed to be detrital in origin [Roberts et al., 1996]. The
existence of high concentrations of SD particles in some
stratigraphic intervals has been demonstrated by elevated
values of the ratio of saturation remanent magnetization to
the mass-dependent magnetic susceptibility (Mrs/c) [Roberts
et al., 1996] and by first-order reversal curve (FORC) dia-
grams [Roberts et al., 2000]. On the basis of X-ray dif-
fractograms of magnetic extracts these SD particles have
been demonstrated to be authigenic greigite [Roberts et al.,
1996]. Finally, wasp-waisted hysteresis loops, low-
temperature measurements, high-frequency-dependent mag-
netic susceptibilities and FORC diagrams have been used to
demonstrate the presence of a substantial SP component in

many Butte Valley samples [Roberts et al., 1995, 2000; Pike
et al., 2001].
[31] Hysteresis loops measured to a maximum field of 1 T

from 89 sediment samples were included in the unmixing
procedure. The measured hysteresis loops have a high
signal-to-noise ratio with a mean Q value of 5.6 [cf.
Jackson and Solheid, 2010]. The loops were processed
using the method discussed in section 2 and formed into
the data matrix, X. Eigenvector analysis reveals that the first
2 principal components of X explain �94% of the data
variability, while the first 3 principal components explain
�98%. As with the previous case study a more detailed
model selection procedure was employed to select appro-
priate values of p and l. For three end-members there is a
clear break in Cidx at l ≈ 0.33, which demonstrates that one
of the end-members has an increasingly large cross-over as
the mixing simplex becomes larger (Figure 7). In contrast,
Iidx has high values for all tested values of l. The four end-
member solutions have a similar break in Cidx at l ≈ 0.1,
which occurs at a convexity error of approximately �2
compared to �3.3 for the position of the same break in the
three end-member model. On this basis a three end-member
model with l = 0.33 is selected to represent the final mixing
model. To demonstrate the quality of the final three end-
member model the hysteresis loop with the largest fitting
error is shown in Figure 8. Even for this worst case, the
misfit between the hysteresis data and the end-member
model is small with a root mean square error (RMSE) of
�1.9 � 10�3 A m2/kg.
[32] The unmixing model yields hysteresis loops that are

consistent with the known magnetic mineralogy of the
samples. End-member 1 is wasp-waisted and does not close
until fields of �600 mT (Figure 9a), which is indicative of a
mixture of high-coercivity and low-coercivity minerals,
possibly with an additional zero-coercivity SP component
[Roberts et al., 1995; Tauxe et al., 1996]. Given this
composition, it is reasonable to assume that end-member 1

Figure 7. Model selection statistics for a three end-member
unmixing of the Butte Valley hysteresis loops. Each line
represents the span of the medians of a given parameter for
the end-members obtained from 103 bootstrap iterations.
There is a clear break at l ≈ 0.33 when one of the end-
members starts to develop branches that cross (indicated
by a lowering of Cidx).

Figure 8. Butte Valley sample BV1240 yielded the largest
mismatch between the measured data (gray shading) and the
corresponding fit produced by the end-member model (solid
line). The residuals, which were obtained by subtracting the
end-member model fit from the data, indicate where the
main mismatches occur.
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corresponds to the mixed titanomagnetite and hematite
mineralogy of the local detrital material originating from
eroded catchment rocks [Roberts et al., 1996]. End-member 2
has a magnetization that is almost completely reversible
with a form that is indicative of SP or MD material
(Figure 9b). FORC data from Roberts et al. [2000] and Pike
et al. [2001] suggest that end-member 2 consists of SP
rather than MD material. Additional evidence to support
this designation is given below. Finally, end-member 3 has
a SD form with a high Mrs/Ms value (Figure 9c). Given the
form of end-member 3 it is interpreted as authigenic SD
greigite with the possible addition of a small amount of SP
greigite that lowers the Mrs/Ms ratio [Roberts et al., 2011b].
Detailed justification of the interpretation of end-member 3

is given below. A histogram showing the distribution of
convexity errors obtained for the 103 bootstrap iterations of
the final end-member model is shown in Figure 9d.
[33] Mixing coefficients for the three end-members can be

expressed as both relative proportions (Figure 9e) and
absolute values (Figure 9f). Relative abundances, which sum
to 1, are obtained directly from the mixing model as written
in equation (5) and result from normalization of each hys-
teresis loop to M̂ = 1. These relative values can be converted
into absolute values simply by multiplying the mixing pro-
portions of a given sample by the measured value of M̂ . The
end-member abundances and hysteresis loops are combined
with existing rock magnetic data to aid environmental
interpretation.

Figure 9. (a–c) The three end-members obtained by unmixing the Butte Valley hysteresis data. Each
loop is shown as a shaded region indicating the mean loop�1 standard error (estimated from the bootstrap
procedure). Labels are as in Figure 6. (d) Histogram of the convexity errors produced by the 103 bootstrap
iterations. (e) Relative and (f) absolute abundances of the three end-members for the Butte Valley data set
as a function of depth. The positions of samples discussed in the text (BV1675 and BV1126) are marked.
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[34] Based on low-temperature analysis, Roberts et al.
[1995] estimated that the magnetic mineral assemblage in
sample BV1675 contained in excess of 80% SP material.
FORC analysis of sample BV1126 revealed a secondary
peak near the origin of the FORC diagram that is due to the
presence of SP material; the FORC distribution also lacks
vertical spreading that would be indicative of MD grains.
The high relative abundance of end-member 2 in these
samples (Figure 9e) confirms that the end-member corre-
sponds to SP rather than to MD behavior. This conclusion is
supported by comparison with the absolute frequency
dependance of magnetic susceptibility, cfd, obtained from
cfd = clf � chf, where clf and chf are the magnetic suscept-
ibilities at low (0.47 kHz) and high (4.7 kHz) frequencies,
respectively. In a multiple linear regression model where the
absolute end-member abundances act as the predictive terms
and the response values are given by cfd, only the abun-
dances of end-member 2 make a significant contribution to
the regression model on the basis of a stepwise selection
criterion at the 0.05 significance level [Draper and Smith,
1998]. Although this regression result should be treated
with caution because of the presence of a weak multi-
collinearity between the absolute end-member abundances
[Swan and Sandilands, 1995], the regression model adds
support to the interpretation of end-member 2 as represent-
ing SP material (Figure 10). Identification of SP particles in
the mixing model demonstrates one of the advantages of
working with hysteresis data. Although the viscous fraction
of SP/SSD material can have a detectable influence in IRM
acquisition curves [Heslop et al., 2004], it is difficult to
detect by unmixing remanence data. In contrast, SP particles
are detected readily by infield measurements and can be
included in environmental magnetic interpretations using
our hysteresis unmixing approach. An additional approach
to identifying SP particles would be to remeasure the sam-
ples with a different field sweep rate and repeat the unmixing
procedure to find how the form of the hypothesized SP end-
member changed.

[35] The SD-type shape of end-member 3 suggests that it
corresponds to authigenic greigite. To test if end-member 3
corresponds to a SD component, the end-member abun-
dances are compared to Mrs/c. It is important to note that
because Mrs/c is concentration independent, such a com-
parison must be based on relative rather than absolute end-
member abundances. Samples were binned according to
their Mrs/c values and mean relative abundances of the end-
members were determined for each bin (Figure 11). When
end-member 2 is dominant, the Mrs/c ratio is low because
the Mrs value of SP particles is zero. For slightly higher
Mrs/c values, end-member 2 is gradually replaced by end-
member 1 and Mrs/c increases to values of �3 kA m�1.
Finally, where end-member 3 is dominant, Mrs/c values
increase to their maximum of 5–8 kA m�1, which in the
Butte Valley sediments reflect the presence of SD greigite
particles [Roberts et al., 1996].
[36] The relative and absolute end-member abundances as

a function of sediment depth (Figures 9e and 9f) reveal a
pattern that aids interpretation of the end-member composi-
tions. End-member 3 is the minor component throughout the
core, except for an interval toward the base (�92–98 m)
where it is dominant. Magnetic iron sulfides were identified
in magnetic separates taken from this horizon [Roberts et al.,
1996] and had an appearance identical to fine-grained grei-
gite from the Simpson oil field, Alaska [Reynolds et al.,
1994]. Given the SD form of the end-member and its asso-
ciation with high Mrs/c values, it clearly corresponds to SD
greigite. Finally, end-member 2 is the dominant component
throughout the sedimentary sequence. Our analysis indicates
that end-member 2 is almost entirely composed of SP
material. Support for the presence of a detrital SP component
is given by Reynolds et al. [2004] and Rosenbaum and
Reynolds [2004a, 2004b], who studied lake sediments from
the same Klamath Basin catchment as the Butte Valley

Figure 10. A significant correlation exists between the
absolute magnetization of end-member 2 and cfd. Linear
regression reveals a nonzero intercept, which indicates that
one or both of the other end-members must also contain a
small amount of SP material.

Figure 11. Relationship between the relative end-member
abundances and Mrs/c (an indicator of the relative abun-
dance of SD grains). Samples were binned according to their
Mrs/c values, and the mean end-member relative abundances
were calculated for each bin. The number of samples in each
bin are shown (note the bin centered on 7 kA m�1 is empty).
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sediments. Reynolds et al. [2004] identified two detrital
components in sediments from Upper Klamath Lake,
Oregon, that correspond to different weathering and trans-
port regimes. The first component comprised volcanic clasts
containing weathered titanomagnetite, which resulted in
hematite production by oxidation. A similar detrital com-
ponent composed of titanomagnetite and hematite was also
observed at nearby Buck lake, southern Oregon [Rosenbaum
et al., 1996]. This combination of low- and high-coercivity
detrital minerals is consistent with the wasp-waisted form of
end-member 1. The second detrital component was inter-
preted to represent rock flour produced by glacial action that
contains extremely fine-grained magnetic particles with SP
characteristics [Rosenbaum and Reynolds, 2004a, 2004b].
The magnetic mineral assemblage of such a rock flour
component is consistent with end-member 2.
[37] We have demonstrated that the presented hysteresis

unmixing method provides a meaningful representation of
the Butte Valley hysteresis data. The isolated end-members
can be identified and associated with processes that are
known to control the magnetic mineral assemblage of the
studied samples. Our analysis unlocks a quantitative inter-
pretation of the respective magnetic mineral components in
the studied Butte Valley core. The ability to determine
stratigraphic variations of magnetic components from hys-
teresis data has considerable potential in quantitative envi-
ronmental magnetism.

5. Discussion and Conclusions

[38] We have presented a new unmixing method for
decomposing hysteresis data into a collection of end-
members under an assumption of linear mixing. The method
is based on a modeling approach that focuses on covariation
within a collection of hysteresis loops. In this way, limited
assumptions concerning shape of the loops are made and
there is no requirement to select from arbitrary basis func-
tions that are thought to approximate the form of naturally
occurring hysteresis loops. Through use of soft constraints,
estimation of the mixing model is robust to outliers and is
therefore not unduly affected by small numbers of samples
with magnetic particles that do not originate from the mixing
system (e.g., an exogenous ash layer in a sediment sequence).
[39] The quality of a final mixing model will depend

heavily on the quality of the data from which it was con-
structed. We therefore recommend that measured loops are
preprocessed using protocols such as those of Jackson and
Solheid [2010] to ensure a high-quality input. It is essential
for the user to consider the feasibility that magnetic mineral
assemblages under investigation resulted from persistent
geological environmental mixing. If this assumption is not
reasonable, inappropriate application of an end-member
unmixing method will produce spurious results. It is also
important to remember that the abundances of high-
coercivity minerals that are not saturated fully during a
hysteresis experiment will be underrepresented in the mixing
model compared to their real abundance in the magnetic
mineral assemblage.
[40] The key aim of this work has been to enable quanti-

tative analysis of hysteresis data with a focus on character-
ization of processes that control the composition of a

magnetic mineral assemblage. As with other unmixing
techniques, for example, those applied to decomposition of
IRM acquisition curves, the components of the mixing
model require detailed classification before they can be
meaningfully interpreted. Therefore, unmixing cannot be
applied in isolation. An additional suite of rock magnetic
data is usually needed to help characterize the components,
therefore the unmixing results will only form part of an
overall interpretational framework for a data set. Neverthe-
less, the proposed unmixing method can help to unlock
quantitative environmental magnetic interpretations.

Appendix A: Convexity Error

[41] To assess the extent to which a set of observations is
bound by a simplex we employ a convexity error, which
measures the difference between S and an ideal model that
bounds all observations [Weltje, 1997]. In this way, the
convexity error is a measure of misfit between the unmixing
model and the data. The convexity error is given by

log10ðPÞ þ log10ðDÞ; ðA1Þ

where P is the proportion of observations located outside the
simplex defined by S and D is their mean squared distance to
the simplex. Therefore, low convexity errors are indicative
of mixing models that are close to bounding all of the
observations.
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